233. Face Selectivity of the Diels-Alder Additions of Sulfur-Substituted Dienes and Tetraenes Grafted onto 7-Oxabicyclo[2.2.1|heptanes $\left.{ }^{1}\right)^{2}$)

by Jean-Mare Tornare and Pierre Vogel*
Institut de chimie organique de l'Université, rue de la Barre 2, CH-1005 Lausanne
and A. Alan Pinkerton and Dieter Schwarzenbach
Institut de Cristallographie, Bâtiment des Sciences Physiques, CH-1015 Lausanne-Dorigny
Dedicated to Prof. Dr. Tino Gäumann on the occasion of his 60th birthday

(10.V.85)

Stereoselective synthesis of 2-methylidene-3-[(Z)-(2-nitrophenylsulfenyl)methylidene]-7-oxabicyclo[2.2.1]heptane (16), 1,4-epoxy-1,2,3,4-tetrahydro-5,8-dimethoxy-2-methylidene-3-[(Z)-(2-nitrophenylsulfenyl)methylidene]anthracene (18), and 1,4-epoxy-1,2,3,4-tetrahydro-5,8-dimethoxy-2-methylidene-3-[(Z)-(phenylsulfeny)methylidene]anthracene (19) are presented. The Diels-Alder additions of these S-substituted dienes and those of 2,5-dimethylidene-3,6-bis\{(Z)-(2-nitrophenyl)sulfenyl]methylidene)-7-oxabicyclo[2.2.1]heptane (17) have been found to be face selective and 'ortho' regiospecific. The face selectivity depends on the nature of the dienophile. It is exo-face selective with bulky dienophiles such as ethylene-tetracarbonitrile (TCNE) and 2-nitro-1-butene and endo-face selective with methyl vinyl ketone, methyl acrylate, and 3-butyn-2-one. In the presence of a Lewis acid, the face selectivity of the Diels-Alder reaction can be reversed. The addition of the first equivalent of a dienophile to tetraene $\mathbf{1 7}$ is at least 100 times faster than the addition of the second equivalent of the same dienophile to the corresponding mono-adduct. The X-ray structure of the crystalline bis-adduct 43, a 7 -oxabicyclo[2.2.1]hepta-2,5diene system annellated to two cyclohexene rings, resulting from the successive additions of methyl acrylate and methyl vinyl ketone to tetraene 17 is presented. Only one of the two endocyclic double bonds of the 7 -oxabicy-clo[2.2.1]hepta-2,5-diene deviates from planarity, the substituents bending towards the endo face by 5.7°.

Introduction. - The face selectivity of the Diels-Alder additions of compounds 1-10 and of substituted derivatives of $\mathbf{1}$ and $\mathbf{2}$ has been studied extensively [3-22]. It depends on

5 [13]

6 [18]

7 [18]

8 [4] [21]

[^0]
the nature of the bridges that constitute the bicyclic part of the molecule and on the nature of the dienophile.

We have found that the Diels-Alder additions of olefinic dienophiles to dienes grafted onto 7-oxabicyclo[2.2.1]heptane systems (e.g. 11 and 14) [23] [24] are highly stereoselective, in the sense that the β-adducts (e.g. 12 and 15, resp.) are generally preferred over the α-isomers (e.g.13). Can this be attributed to an attractive effect of the oxa bridge on the dienophile which would favour the exo-face attack and endo-Alder-rule orientation [25]? The exo-face selectivity observed for the cycloadditions of the oxanorbornane derivatives 4 and 5 to strong dienophiles was consistent with this hypothesis. We have now prepared the S-substituted dienes 16-19. The S-substituent is not only a useful stereochemical

16

17

$18 \mathrm{Ar}=2-\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}$ $19 \mathrm{Ar}=\mathrm{C}_{6} \mathrm{H}_{5}$
probe but also renders the s-cis-butadiene moiety much more reactive than that in the Cl and MeO -substituted analogs 4 . Thus, the dienes 16, 18, and 19 and tetraene 17 are versatile compounds for Diels-Alder reactivity studies intended to approach answers to the following questions: (a) does the face selectivity of the cycloadditions of exocyclic s-cis-butadiene moieties grafted onto 7-oxabicyclo[2.2.1]heptanes at $\mathrm{C}(2), \mathrm{C}(3)$ depend on the nature of the dienophile and (b) does the face selectivity depend on the nature of the bridge at $\mathrm{C}(5), \mathrm{C}(6)$ (i.e., saturated vs. unsaturated)?

Results and Discussion. - The (arenesulfenyl)diene 16 was prepared from the known 2,3-dimethylidene-7-oxabicyclo[2.2.1]heptanc (20) [26]. The addition of one mol-equiv. of 2-nitrobenzenesulfenyl chloride to 20 in $\mathrm{MeCN}\left(20^{\circ} \mathrm{C}\right)$ gave a mixture of unstable adducts which was directly treated with an excess of t-BuOK in anh. THF leading to a 1:3.5 mixture of adduct 21 and S-substituted diene 16. The two compounds were separated by column chromatography on silica gel. The structures of 16 and 21 were deduced from their ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR spectra and with the help of double-irradiation experiments.

For 16, irradiation at the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ signal of $H-\mathrm{C}-\mathrm{SAr}$ at 6.3 ppm led to a NOE at 5.29 ppm (H of $\mathrm{CH}_{2}=\mathrm{C}(2)$ cis with respect to $\left.\mathrm{C}(2), \mathrm{C}(3)\right)$. No NOE was observed for the adjacent bridgehead proton $\mathrm{H}-\mathrm{C}(4)$ at 5.30 ppm . Irradiation at $5.04 \mathrm{ppm}\left(\mathrm{H}\right.$ of $\mathrm{CH}_{2}=\mathrm{C}(2)$ trans $)$ led to NOE's at $4.92 \mathrm{ppm}(\mathrm{H}-\mathrm{C}(1))$ and 5.29 ppm . The signals of the bridgehead protons $\mathrm{H}-\mathrm{C}(1)$ and $\mathrm{H}-\mathrm{C}(4)$ were easily recognized by their vicinal coupling with Hexo-C(6) and Hexo-C(5), respectively $\left({ }^{3} J(\mathrm{H}, \mathrm{H}) \approx 5 \mathrm{~Hz}\right)$ [27].

No trace of the (E)-isomer of 16 was detected, thus suggesting that 16 was formed under conditions of thermodynamic control from a [1,2]- or/and [1,4]-arenesulfenyl chloride adduct of the 'Markovnikoff type' [28]. Adduct 21 corresponds to a 'anti-Markovnikoff' type of addition which is not capable to eliminate HCl . The endo position of the chloromethyl group in 21 was given by the analysis of the vicinal coupling constants in the ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum between the C -atom of the $\mathrm{CH}_{2} \mathrm{Cl}$ group and the adjacent bridgehead proton $\mathrm{H}-\mathrm{C}(1)\left({ }^{3} \mathrm{~J}(\mathrm{C}, \mathrm{H})<1 \mathrm{~Hz}\right)$ [29].

The preparation of tetraene 17 has been described elsewhere [2] [30] ${ }^{3}$). The S-substituted diene 18 was obtained in 35% yield on treating diene 22 [23b] with 1 mol-equiv. of 2-nitrobenzenesulfenyl chloride ($\mathrm{AcOH}, \mathrm{LiCl}$) and then with t - BuOK in THF. Similarly, the treatment of 22 with N-chlorosuccinimide and thiophenol in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ followed by HCl elimination (t-BuOK, THF) [31] afforded the phenylthio-substituted diene 19 in 44% yield. The structures of 18 and 19 were deduced from their mode of formation and from their spectral data. The (Z)-configuration of the arylthio-substituted double bond was established by NOE measurements in the $360-\mathrm{MHz}-{ }^{-1} \mathrm{H}-\mathrm{NMR}$ spectra, in an analogous way as in the case of diene 16.

Our results on the thermal Diels-Alder additions of several strong dienophiles to the S-substituted dienes 16-19 are summarized in Table 1. All the reactions gave good yields of the corresponding adducts whose structures were derived from their spectral data (see Exper. Part) and more specifically, from their $360-\mathrm{MHz}-{ }^{-} \mathrm{H}-\mathrm{NMR}$ spectra with the help of double irradiation experiments. The ${ }^{1} \mathrm{H}$-NMR characteristics of $\mathbf{2 3 - 3 8}$ are summarized in Tables 2 and 3.

In 23-29, the signals of the bridgehead protons $\mathrm{H}-\mathrm{C}(1)$ and $\mathrm{H}-\mathrm{C}(8)$ were recognized by their vicinal coupling constants with the adjacent $\mathrm{Hexo}-\mathrm{C}(9)$ and $\mathrm{Hexo}-\mathrm{C}(10)$. The signals of the olefinic CH_{2} groups of $\mathbf{3 0 - 3 8}$ were assigned by NOE measurements. Irradiation of the signals attributed to $\mathrm{H}-\mathrm{C}\left(10^{\prime}\right)$ (trans to $\mathrm{C}(9), \mathrm{C}(10)$) led to NOE's at the signals attributed to $\mathrm{H}-\mathrm{C}(1)$. The $\alpha v s . \beta$ (endo vs. exo) configuration of the arylthio substituent in the adducts 23-40 was given by the homoallylic coupling constants measured between $\mathrm{H}-\mathrm{C}(3)(\mathrm{H}-\mathrm{C}(1)$ in 39 and $\mathbf{4 0}$) and the bridgehead proton $\mathrm{H}-\mathrm{C}(8)(\mathrm{H}-\mathrm{C}(5)$ in 39 and $\mathbf{4 0})$. For several other cyclohexenes annellated to 7 -oxabicyclo[2.2.1]heptane systems, it has been demonstrated [13] [32] that ${ }^{5} J\left(\mathrm{H}-\mathrm{C}(8), \mathrm{H}_{\alpha}-\mathrm{C}(3)\right)<0.2 \mathrm{~Hz}$, whereas ${ }^{5} J\left(\mathrm{H}-\mathrm{C}(8), \mathrm{H}_{\beta}-\mathrm{C}(3)\right)$ varies between 0.5 and 1.8 Hz . The signals of $\mathrm{H}_{\beta}-\mathrm{C}(6)$ in 23-38 and of $\mathrm{H}_{\beta}-\mathrm{C}(4)$ in 39 and 40 were readily identified by the long-range transannular and intraannular coupling constants with the corresponding homoallylic protons. In all cases (23-38), we found that ${ }^{5} J\left(\mathrm{H}_{\alpha}-\mathrm{C}(3), \mathrm{H}_{\beta}-\mathrm{C}(6)\right)>{ }^{5} J\left(\mathrm{H}_{\alpha}-\mathrm{C}(3), \mathrm{H}_{\alpha}-\mathrm{C}(6)\right)$ or ${ }^{5} J\left(\mathrm{H}_{\beta}-\mathrm{C}(3), \mathrm{H}_{\alpha}-\mathrm{C}(6)\right)>{ }^{5} J\left(\mathrm{H}_{\beta}-\mathrm{C}(3), \mathrm{H}_{\beta}-\mathrm{C}(6)\right)$, in agreement with expectations [32]. The position α vs. β of the

[^1]Table 1. Face Selectivities of the Diels-Alder Additions of 16-19 to Strong Dienophiles. Isolated yields are shown in parentheses ${ }^{a}$).

$\left.33(15 \%)^{\text {b }}\right)^{\text {d }}$)
$17 \cdot \operatorname{MVK} \xrightarrow[\mathrm{PhH}]{100^{\circ} \mathrm{C}}$

38 (84%)

18,19 - MVK

$39\left(\mathrm{Ar}=2-\mathrm{NO}_{2}-\mathrm{C}_{5} \mathrm{H}_{4}\right)(91 \%)$	$<1: 10$	
$\mathbf{4 0}\left(\mathrm{Ar}=\mathrm{C}_{6} \mathrm{H}_{5}\right)$	(93%)	$<1: 13$

${ }^{\text {a }}$) The proportions of the adducts isolated after column chromatography did not differ within experimental error from the proportions measured in the $360-\mathrm{MHz}^{1} \mathrm{H}-\mathrm{NMR}$ or/and $15.01-\mathrm{MHz}^{-13} \mathrm{C}-\mathrm{NMR}$ spectra of the reaction mixture before purification.
${ }^{b}$) The relative configuration of $\mathrm{C}(4)$ is not established unambiguously (no measurable ${ }^{3} J(\mathrm{C}, \mathrm{H})$ coupling constants for the CH_{2} signals of the Et groups in the ${ }^{13} \mathrm{C}$-NMR spectrum due to line broadening).
${ }^{\text {c }}$) Withoul solvent.
${ }^{d}$) This compound was unstable in solution. Its structure has not been determined unambiguously.
side chain $\left(\mathrm{CH}_{3} \mathrm{CO}\right.$ or $\left.\mathrm{CH}_{3} \mathrm{OOC}\right)$ in adducts $28,29,34-37,39$, and $\mathbf{4 0}$ was given by the vicinal coupling constants measured for the protons at the site of attachment of the side chain ($\mathrm{H}-\mathrm{C}(4)$ in 28, 29 and $34-37, \mathrm{H}-\mathrm{C}(2)$ in 39 and 40) [33]. Typical values ${ }^{3} J(\mathrm{H}-\mathrm{C}(3), \mathrm{H}-\mathrm{C}(4))=10-12 \mathrm{~Hz}$ are expected for pseudoaxial/axial vicinal coupling constants in cyclohexenes [34] [35]. For pseudoequatorial/axial vicinal coupling constants, values of 4-6 $\mathbf{H z}$ [34] are typical for cyclohexenes, whereas pseudoequatorial/equatorial coupling constants are usually smaller than 3 Hz [36]. Our data suggest the conformation represented in Fig. 1 for adducts 28, 34, and 36. This is confirmed by the comparison of their ${ }^{\text {I }} \mathrm{H}$-NMR characteristics with those observed for the bis-adduct 43 presented below, for which the structure was established by X-ray crystallography (compare with data of $\mathrm{H}-\mathrm{C}(5)$ and $\mathrm{H}-\mathrm{C}(6)$ in 43, see Exper. Part).

Fig. 1. Conformation of adducts 28, 34, 43
$\left(R=\mathrm{COCH}_{3}\right)$, and $36\left(R=\mathrm{COOCH}_{3}\right)$

Fig. 2. Possible conformation of adducts 29, 35, 39, $40\left(R=\mathrm{COCH}_{3}\right)$, and 37, 43
($R=\mathrm{COOCH}_{3}$)

The fragmentary ${ }^{1} \mathrm{H}$-NMR data obtained for adducts $\mathbf{2 9}, \mathbf{3 5}$, and 37 (see Tables 2 and 3) and their comparison with those collected for the bis-adduct $\mathbf{4 3}$ were in agreement with the conformation proposed in Fig. 2 and with the β configuration of the acetyl and ester side chains in these molecules. In the case of adducts 39 and 40 , the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ data (see Exper. Part) were more complete and also suggested structures analogous to that of Fig. 2.

As in the case of the unsubstituted tetraene 11 [37], the addition of the first equiv. of dienophile to tetraene $\mathbf{1 7}$ is at least 100 times faster than the addition of the second equiv. of dienophile to the corresponding mono-adduct. Only very reactive dienophiles can add to the mono-adducts $\mathbf{3 0 - 3 8}$ under thermal conditions. For instance, methyl propiolate added to adduct 35 on heating at $80^{\circ} \mathrm{C}$ for 3 days yielding the benzoate derivative 42 (70%, isolated). The latter derived most probably from the bis-adduct 41 which eliminates one equiv. of 2 -nitrothiophenol under the reaction conditions. The ${ }^{1} \mathrm{H}$-NMR data of 42 confirmed the proposed structures for 38 (and 29, 37, 39, and 40). Methyl vinyl ketone (MVK) was less reactive than methyl propiolate. It gave bis-adducts under forcing

[^2]Table 2. $360-\mathrm{MHz}^{-}{ }^{\prime} H-N M R$ Characteristics of Adducts 23-29. Chemical shifts in ppm ($\pm 0.02 \mathrm{ppm}$); $30^{\circ} \mathrm{C}$;

Adduct	Solvent	Chemical shifts δ_{H}					
		$\mathrm{H}-\mathrm{C}(1)$	$\mathrm{H}-\mathrm{C}(3)$	H-C(4)	$\mathrm{H}_{\alpha}-\mathrm{C}(5)$	$\mathrm{H}_{\rho}-\mathrm{C}(5)$	$\mathrm{H}_{\alpha}-\mathrm{C}(6)$
23	$\mathrm{CD}_{3} \mathrm{CN}$	5.22	$4.95\left(\alpha^{\text {d }}\right)$)	-	-	-	3.43
24	$\mathrm{CD}_{3} \mathrm{COCD}_{3}$	5.21	$\left.5.42\left(\beta^{\mathrm{d}}\right)\right)$	-	-	-	3.49
25	CDCl_{3}	4.89	$\left.5.11\left(\alpha^{d}\right)\right)$	-	2.22-2.12	$2.07-1.76$	2.62-2.56
26	$\mathrm{C}_{6} \mathrm{D}_{6}$	4.77	4.85 ($\beta^{\text {d }}$))	-	2.18-2.05		2.54-2.44
27	CDCl_{3}	5.0	$4.5\left(\alpha^{\text {d }}\right.$) $)$	-	2.40-2.27		
28	CDCl_{3}	4.91	$4.59\left(\alpha^{\text {d }}\right)$)	3.97	ca. 2.1	ca. 2.0	2.15
29	$\mathrm{C}_{6} \mathrm{D}_{6}$	4.91	4.94 ($\beta^{\text {d }}$))	2.46			

	Coupling constants $J(\mathrm{H}, \mathrm{H})$				
	$\mathrm{H}-\mathrm{C}(1), \mathrm{H}_{\text {exo }}-\mathrm{C}(10)$	$\mathrm{H}-\mathrm{C}(1), \mathrm{H}_{\beta}-\mathrm{C}(6)$	$\mathrm{H}-\mathrm{C}(3), \mathrm{H}-\mathrm{C}(4)$	$\mathrm{H}-\mathrm{C}(3), \mathrm{H}_{\alpha}-\mathrm{C}(6)$	
$\mathbf{2 3}$	4.4	1.0	-	2.3	
$\mathbf{2 4}$	4.5	1.0	-	3.6	
$\mathbf{2 5}$	4.0	1.0	-	1.4	
$\mathbf{2 6}$	4.3	1.0	-	1.7	
$\mathbf{2 7}$	3.5	$\mathrm{~b})$	-	$\left.{ }^{\mathrm{b}}\right)$	
$\mathbf{2 8}$	3.5	0.8	4.3	1.0	
$\mathbf{2 9}$	$\mathbf{4 . 0}$	$\mathrm{~b})$	6.0	$\left.{ }^{\mathrm{b}}\right)$	

${ }^{\text {a }}$) J 's $<0.2 \mathrm{~Hz}$ are notreported. ${ }^{\text {b }}$) Some J 's could not be evaluated due to spectral complexity. $\left.{ }^{c}\right)^{3} J\left(\mathrm{H}_{\alpha}-\mathrm{C}(5), \mathrm{H}-\mathrm{C}(4)\right)=3.0$;

Table 3. 360-MHz- ${ }^{1} H-N M R$ Characteristics of Adducts 30-38. Chemical shifts in ppm ($\pm 0.02 \mathrm{ppm}$); $30^{\circ} \mathrm{C}$;

Adduct	Solvent	Chemical shifts δ_{H}						
		$\mathrm{H}-\mathrm{C}(1)$	$\mathrm{H}-\mathrm{C}(3)$	$\mathrm{H}-\mathrm{C}(4)$	$\mathrm{H}_{\alpha}-\mathrm{C}(5)$	$\mathrm{H}_{\mu}-\mathrm{C}(5)$	$\mathrm{H}_{\alpha}-\mathrm{C}(6)$	$\mathrm{H}_{\beta}-\mathrm{C}(6)$
30	$\mathrm{CD}_{3} \mathrm{COCD}_{3}$	4.81	$4.32\left(\alpha^{c}\right)$)	-	-	-	2.86	3.08
31	CDCl_{3}	5.02	$4.90\left(\alpha^{\text {c }}\right)$)	-			2.55-2.45	
32	CDCl_{3}	5.18	$5.22\left(\beta^{c}\right)$)		ca. $2.0 \begin{array}{r}\text { 2.19-2.0 } \\ \text { ca. } 2.2\end{array}$		2.73-2.56	
34	$\mathrm{CD}_{2} \mathrm{Cl}_{2}$	5.10	$4.68\left(\alpha^{c}\right)$)	2.96	1.99	1.80	2.09	2.34
35	$\mathrm{C}_{6} \mathrm{D}_{6}$	5.18	$4.99\left(\beta^{c}\right)$)	2.43	1.66	1.53	1.95	
36	CDCl_{3}	5.25	$4.77\left(\alpha^{\text {c }}\right.$) $)$	3.02	2.12	1.96	2.23	2.42
37	CDCl_{3}	5.18	4.90 ($\left.\beta^{\mathrm{c}}\right)$)	2.84	2.13	1.20	2.13	2.53
38	CDCl_{3}	5.13	5.45	-	7.07		3.11	3.37

	Coupling constants J ($\mathrm{H}, \mathrm{H})$				
	$\mathrm{H}-\mathrm{C}(1), \mathrm{H}_{\beta}-\mathrm{C}(6)$	$\mathrm{H}-\mathrm{C}(3), \mathrm{H}-\mathrm{C}(4)$	$\mathrm{H}-\mathrm{C}(3), \mathrm{H}_{3}-\mathrm{C}(6)$	$\mathrm{H}-\mathrm{C}(3), \mathrm{H}_{\beta}-\mathrm{C}(6)$	$\mathrm{H}-\mathrm{C}(3), \mathrm{H}-\mathrm{C}(5)$
30	0.5	-	$1.7\left(\alpha^{\text {c }}\right)$)	2.7	-
31	1.2		$1.0\left(\alpha^{\text {c }}\right)$)	2.1	$1.9{ }^{\text {d }}$)
32	1.2	-	2.5 ($\beta^{\text {c }}$) $)$	1.5	$1.2{ }^{\text {c }}$)
34	1.2	4.2	$0.7\left(\alpha^{\text {c }}\right)$)	1.4	<0.2
35	${ }^{\text {f }}$	6.5	${ }^{\text {f }}$ ($\beta^{\text {c }}$))	¢)	< 0.2
36	0.5	4.3	$1.0\left(\alpha^{\mathrm{c}}\right)$)	3.2	<0.2
37	1.0	4.0	${ }^{\text {f.) }}\left(\beta^{c}\right)$)	2.2	<0.2
38	1.2	--	6.5	6.2	0.7

${ }^{\text {a }}$) J 's $<0.2 \mathrm{~Hz}$ are not reported. ${ }^{\text {b }}$) Compounds 33 and 35 decomposed in solution (see Exper. Part). ${ }^{\text {c }}$) Relative $\left.{ }^{3} J\left(\mathrm{H}_{\beta}-\mathrm{C}(5), \mathrm{H}_{\alpha}-\mathrm{C}(6)\right)=6.5 ;{ }^{3} J\left(\mathrm{H}_{\alpha}-\mathrm{C}(5), \mathrm{H}_{\alpha}-\mathrm{C}(6)\right)=2.5 \mathrm{~Hz},{ }^{h}\right){ }^{3} J\left(\mathrm{H}-\mathrm{C}(5), \mathrm{H}_{\beta}-\mathrm{C}(6)\right)=4.7 ;{ }^{3} J\left(\mathrm{H}-\mathrm{C}(5), \mathrm{H}_{\alpha}-\mathrm{C}(6)\right)$
internal reference: tetramethylsilane $(=0.0 \mathrm{ppm})$; coupling constants ${ }^{n} J(\mathrm{H}, \mathrm{H})$ in $\left.\mathrm{Hz}(\pm 0.1 \mathrm{~Hz})^{\mathrm{a}}\right)$.

| $\mathrm{H}_{\beta}-\mathrm{C}(6)$ | $\mathrm{H}-\mathrm{C}(8)$ | $\mathrm{CH}_{2}(9)$ and $\mathrm{CH}_{2}(10)$
 or methylene protons | SAr | Others $\left.{ }^{\mathrm{b}}\right)$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 3.55 | 5.08 | $1.51-1.28$ | $8.12-7.65$ | |
| 3.89 | 5.03 | $1.91-1.39$ | $8.30-7.66$ | |
| $2.56-2.49$ | 4.73 | $2.07-1.76 ; 1.60-1.23$ | $8.08-7.37$ | $0.73\left(t, 3 J=7.2, \mathrm{CH}_{3}\right)$ |
| $2.44-2.34$ | 4.75 | $1.82-1.66(2 \mathrm{H}) ; 1.36-1.3(1 \mathrm{H}) ; 1.05-0.99(1 \mathrm{H})$ | $8.0-7.42$ | $2.0\left(q, \mathrm{CH}_{2}\right) ; 0.7\left(\mathrm{CH}_{3}\right)$ |
| $2.40-2.27$ | 4.79 | $1.93-1.84(2) ; 1.77-1.7(1 \mathrm{H}) ; 1.35-1.27(1 \mathrm{H})$ | $7.97-7.38$ | $2.1-1.98\left(\mathrm{CH}_{2}\right) ; 0.87\left(\mathrm{CH}_{3}\right)$ |
| ca. 2.32 | 4.78 | $1.89-1.75(2 \mathrm{H}) ; 1.67-1.63(1 \mathrm{H}) ; 1.32-1.24(1 \mathrm{H})$ | $8.01-7.33$ | $2.03\left(s, \mathrm{CH}_{3} \mathrm{CO}\right)$ |
| $2.02-1.07$ | 4.68 | $2.02-1.07(10 \mathrm{H})$ | $7.76-6.67$ | $1.92\left(s, \mathrm{CH}_{3} \mathrm{CO}\right)$ |

$\mathrm{H}-\mathrm{C}(3), \mathrm{H}_{\beta}-\mathrm{C}(5)$	$\mathrm{H}-\mathrm{C}(3), \mathrm{H}-\mathrm{C}(5)$	$\mathrm{H}-\mathrm{C}(8), \mathrm{H}_{e x o}-\mathrm{C}(9)$	$\mathrm{H}-\mathrm{C}(8), \mathrm{H}-\mathrm{C}(3)$	$\mathrm{H}-\mathrm{C}(5), \mathrm{H}-\mathrm{C}(5)$	$\mathrm{H}-\mathrm{C}(6), \mathrm{H}-\mathrm{C}(6)$
$3.5\left(\alpha^{\text {d }}\right.$) $)$	-	4.4	<0.2	-	19.0
2.7 ($\beta^{\text {d }}$) $)$	-	4.5	1.2	-	19.3
$2.2\left(\alpha^{\text {d }}\right)$)	$1.0{ }^{\text {e }}$)	4.0	<0.2	${ }^{\text {b }}$)	${ }^{\text {b }}$)
$0.7\left(\beta^{\text {d }}\right.$) $)$	1.0^{\prime})	4.3	0.5	${ }^{\text {b }}$)	${ }^{\text {b }}$)
${ }^{\text {b }}$)	${ }^{\text {b }}$)	3.5	<0.2	${ }^{\text {b }}$)	${ }^{\text {b }}$)
$2.8\left(\alpha^{\text {d }}\right)$)	$<0.2^{\text {c }}$)	3.5	<0.2	${ }^{\text {b }}$)	${ }^{\text {b }}$)
${ }^{\text {b }}$)	$<0.2{ }^{\text {b }}$)	4.0	1.4	${ }^{\text {b }}$)	${ }^{\text {b }}$)
${ }^{3} J\left(\mathrm{H}_{\beta}-\mathrm{C}(5), \mathrm{H}-\dot{\mathrm{C}}(4)\right)=11.0 \mathrm{~Hz} .{ }^{\text {d }}$) Relative configuration of $\left.\mathrm{H}-\mathrm{C}(3) .{ }^{\mathrm{c}}{ }^{4} J\left(\mathrm{H}_{\alpha}-\mathrm{C}(3), \mathrm{H}_{\alpha}-\mathrm{C}(5)\right) .{ }^{9}\right)^{4} J\left(\mathrm{H}_{\beta}-\mathrm{C}(3), \mathrm{H}_{\beta}-\mathrm{C}(5)\right)$,					

internal reference TMS $(=0.0 \mathrm{ppm})$; coupling constants ${ }^{n} J(\mathrm{H}, \mathrm{H})$ in $\left.\left.\mathrm{Hz}(\pm 0.1 \mathrm{~Hz})^{\mathrm{a}}\right)^{\mathrm{b}}\right)$.

$\mathrm{H}-\mathrm{C}(8)$	$\mathrm{HC}(\mathrm{SAr})=\mathrm{C}(9)$	$\mathrm{H}-\mathrm{C}=\mathrm{C}(10)$ trans to $\mathrm{C}(9), \mathrm{C}(10)$	$\mathrm{H}-\mathrm{C}=\mathrm{C}(10)$ cis to $\mathrm{C}(9), \mathrm{C}(10)$	SAr	Others
5.09	6.08	4.90	4.74	$7.4-6.6$	
5.55	6.36	5.46	5.31	$8.25-7.3$	$2.04(q) ; 0.72(t)$
5.47	6.41	5.36	4.95	$8.28-7.32$	$2.0(\mathrm{~m}) ; 0.76(\mathrm{br})$
5.42	6.34	5.27	4.75	$8.16-7.24$	$1.93\left(\mathrm{CH}_{3} \mathrm{CO}\right)$
5.66	6.24	5.44	5.26	$8.02-6.65$	$1.84\left(\mathrm{CH}_{3} \mathrm{CO}\right)$
5.53	6.41	5.41	5.09	$8.27-7.31$	$3.37\left(\mathrm{CH}_{3} \mathrm{O}\right)$
5.52	6.42	5.48	5.24	$8.28-7.31$	$3.68\left(\mathrm{CH}_{3} \mathrm{O}\right)$
5.57	6.31	5.17	4.65	$2.40\left(\mathrm{CH}_{3} \mathrm{CO}\right)$	

$\underline{\mathrm{H}-\mathrm{C}(4), \mathrm{H}_{\mathrm{x}}-\mathrm{C}(5)}$	$\mathrm{H}-\mathrm{C}(4), \mathrm{H}_{\beta}-\mathrm{C}(5)$	$\mathrm{H}-\mathrm{C}(8), \mathrm{H}-\mathrm{C}(3)$	$\mathrm{H}-\mathrm{C}(5), \mathrm{H}-\mathrm{C}(5)$	$\mathrm{H}-\mathrm{C}(6), \mathrm{H}-\mathrm{C}(6)$	Others
-	-	<0.2	-	19.2	
-	-	<0.2	${ }^{\text {f }}$	${ }^{\text {f }}$)	$7.2\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)$
-	-	1.0	${ }^{\text {f }}$)	${ }^{\text {f }}$	7.2
2.7	10.6	<0.2	${ }^{5}$	${ }^{\text {I }}$	${ }^{\text {f) }}$
3.5	8.0	1.0	${ }^{\text {f }}$)	$\left.{ }^{1}\right)$	${ }^{1}$)
3.0	11.8	<0.2	12.5	18.7	${ }^{\text {g }}$)
${ }^{1}$)	$\left.{ }^{5}\right)$	0.7	${ }^{5}$	${ }^{\text {f }}$)	${ }^{\text {f }}$
-	-	1.8	-	25	${ }^{\text {h }}$)
configuration of $\left.\left.\mathrm{H}-\mathrm{C}(3) .{ }^{\text {d }}{ }^{4} J\left(\mathrm{H}_{\alpha}-\mathrm{C}(3), \mathrm{H}_{\beta}-\mathrm{C}(5)\right) .{ }^{\text {c }}\right)^{4} J\left(\mathrm{H}_{\alpha}-\mathrm{C}(3), \mathrm{H}_{\alpha}-\mathrm{C}(5)\right) .{ }^{f}\right)$ Could not be determined. $\left.{ }^{9}\right)$ $=2.7 \mathrm{~Hz}$.					

conditions with low yields as polymerization became the dominant reaction under thermal conditions. However, MVK precomplexed with $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ added smoothly to 37 at $-78^{\circ} \mathrm{C}$ and afforded the bis-adduct $43(70 \%$, isolated). The latter cycloaddition was highly stereoselective, no trace of isomeric product could be detected in the ' H - and ${ }^{13} \mathrm{C}$-NMR spectra of the crude reaction mixture. The structure of 43 was deduced from its $360-\mathrm{MHz}-{ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum (see Exper. Part) and was confirmed by single-crystal X-ray diffraction studies (see below). All cycloadditions of the S-substituted dienes 16, 18, and 19 and tetraene 17 were 'ortho' regiospecific as expected [38], no trace of 'meta' regioisomer could be detected.

Our results demonstrate that the face selectivity of the Diels-Alder additions of the S-substituted exocyclic dienes grafted onto 7-oxabicyclo[2.2.1]heptane skeletons varies with the nature of the dienophile and that coordination of the dienophile with the oxa bridge is not the unique factor responsible for the face selectivity of the reactions. With TCNE and 2-nitro-1-butene, the exo face is favoured, whereas with dienophiles such as MVK, methyl acrylate, or butynone, the endo-face attack is preferred. One should note that the exo-face selectivity is in general [13] better for TCNE than for the 2-nitro-1butene cycloadditions. Furthermore, the exo-face selectivity of the TCNE additions to diene $\mathbf{1 6}(1.8: 1)$ is not as good as for the TCNE additions to $\mathbf{4}(7: 3$ to $>97: 3)$ or to the tetraenes 5 (85:15) and $\mathbf{1 7}(>10: 1)$. The endo-face selectivity of the Diels-Alder addition of MVK to diene $\mathbf{1 6}$ is also slightly smaller than that observed for the cycloadditions of MVK to 17-19. Surprisingly, under conditions of Lewis-acid catalysis, the reaction of MVK to the diene moiety of adduct 37 is highly exo-face selective.

The results can be interpreted in terms of the competition between at least two factors, i.e.: (1) steric hindrance which renders the exo face more accessible than the endo face, and (2) a stereoelectronic factor which favours endo face attack (as in the case of the Diels-Alder additions of $\mathbf{1 - 3}, 6$, and 7) which is related to the non-planarity of the 2-bicyclo[2.2.1]heptene double bond [39] $]^{5}$) and to the higher stability of syn-vs. anti-sesquinorbornene [12] [22] [39].

The endo approach of TCNE to dienes $1-3,4,5,16-19$ cannot avoid the steric repulsions between the $\mathrm{C}(5), \mathrm{C}(6)$ bridge and the CN group as shown in Fig. 3, thus making the exo attack the preferred mode (Fig. 4). In the case of 2-nitro-1-butene, the

rig. 3.

Fig. 5.

[^3]same steric effect intervenes although less strongly as only one end of the dienophile is substituted. This could explain the lower face selectivity observed for the cycloadditions of 2-nitro-1-butene compared with those of TCNE [13]. With MVK and methyl acrylate, the steric factor is less important for the endo attack since the dienophile can approach the diene in an anti-Alder-rule [25] fashion, as observed (see Fig.5). In the case of the cycloaddition of butynone to 17 , the steric factor is negligible, and the reaction is dominated by the stereoelectronic factor favouring the endo-face attack.

It is interesting to note that the exo mode of addition of MVK and acrylic ester occurs following the Alder rule (Fig.6). When coordinated to BF_{3}, MVK is a bulkier reagent than in its native form. This might explain the exo-face selectivity of the Lewis-acid-catalyzed cycloaddition of MVK to 37. Alternatively, one can invoke a co-coordination of the dienophile and O-bridge of the 7-oxabicyclo[2.2.1]heptane system to the Lewis acid that favours the exo-face attack following the Alder rule (Fig.6).

Crystal Structure Determination of Bis-adduct 43. - The bis-adduct 43 crystallized as yellow plates from hexane/AcOEt 1:1. The crystal used for data collection was cleaved from a larger plate in order to have sufficient thickness.

X-Ray intensity data collection was carried out at room temperature with a Syntex $P 2_{l}$ automatic diffractometer. The crystal data, intensity collection, structure solution, and refinement methods are summarized in Table 4. The measured intensities were corrected for absorption as before [40], and the variances of the intensities were derived from counting statistics and the fluctuations of three periodically measured check reflections.

Table 4. Crystal Data, Intensity Measurements, Structure Solution, and Refinement for Bis-adduct 43

Formula	$\mathrm{C}_{30} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{~S}_{2}$	Radiation	$\mathrm{Cu}-\mathrm{K} \alpha$
Molecular weight	618.76	$\lambda[\AA]$	1.54178
Crystal dimensions [mm]	$0.30 \times 0.18 \times 0.04$	$\mu\left[\mathrm{cm}^{-1}\right]$	12.1
Crystal system	Triclinic	Scan method	$2 \theta-\theta$
$a[\AA]$	7.7382(7)	$(\sin \theta / \lambda)_{\text {max }}$	0.55
$b[\AA]$	$9.381(1)$	No. of unique reflections	3906
$c[\AA]$	20.346(2)	No. of reflections <3	564
$\alpha\left[{ }^{\circ}\right]$	83.680(8)	No. of observations/No of variables	
$\beta\left[{ }^{\circ}\right]$	82.951(7)		8.3/7.8 ${ }^{\text {a }}$)
$\gamma\left[{ }^{\circ}\right]$	78.200(8)	Structure solution	MULTAN and Fourier
$U\left[\AA^{3}\right]$	1429.3(3)	Refinement method	Blocked matrix least squares
Z	2	Function minimized	$\Sigma w(\|F \mathrm{o}\|-\|F \mathrm{c}\|)^{2}$
$d_{\text {obs. }}\left[\mathrm{g} \cdot \mathrm{cm}^{-3}\right]$	1.42	w	$1 / \sigma^{2}$
$d_{\text {caic. }}\left[\mathrm{g} \cdot \mathrm{cm}^{-3}\right]$	1.41	R	0.059
F_{000}	636	R_{w}	0.084
Space group	$P \overline{1}$	Goodness of lit	2.73

${ }^{2}$) Only those reflections with $I<3 \sigma$ with $|F \mathrm{c}|>|F \mathrm{o}|$ were included in the refinement.

The computer programs used for data reduction and structure solution were taken from the XRAY-72 program system [41]. The scattering factors for the neutral non-H-atoms were taken from Cromer and Mann [42], and for H from Stewart et al. [43]. Anomalous dispersion coefficients were taken from Cromer and Liberman [44]. Starting phases were generated by the program MULTAN [45], the subsequent E-map revealing all the non-Hatoms. Refinement by block matrix least squares to $R=0.089$, followed by a difference-Fourier synthesis revealed all H -atoms. Relinement was continued in 4 blocks to $R=0.059$. In the last cycles, the non- H -atoms were refined anisotropically and H-atoms of the same type constrained to have the same isotropic temp. factor. The final atomic

Fig. 7. ORTEP representations of 43. For practical reasons, the atom numbering does not follow the IUPAC rules.

Table 5. Final Atomic Coordinates for Bis-adduct $\mathbf{4 3}^{\text {a }}$)

Atom	x	y	z	Atom	x	y	z
C(1)	$0.7667(5)$	$0.3133(4)$	$0.7245(2)$	0 (4)	0.1524(4)	0.1934 (3)	0.8732(2)
C(2)	0.7974(4)	$0.1683(3)$	0.7688(2)	0 (5)	-0.0340(5)	$0.3487(5)$	$0.9275(2)$
C(3)	$0.7466(5)$	$0.1403(4)$	0.8415(2)	$0(6)$	1.6213(7)	-0.3648(3)	0.6732(2)
$\mathrm{C}(4)$	$0.8343(5)$	-0.0167(4)	0.8652(2)	0 (7)	$1.4798(5)$	-0.1923(3)	0.7286 (2)
C(5)	0.8327(6)	-0.1272(4)	0.8153(2)	0 (15)	0.7391(3)	0.2606 (3)	$0.6630(1)$
$\mathrm{C}(6)$	$0.9377(6)$	$-0.0899(4)$	0.7493(2)	S(1)	0.5011(1)	$0.16281(9)$	$0.85455(4)$
C(7)	0.8818(5)	$0.0687(4)$	0.7289(2)	S(2)	$1.3378(1)$	$0.07374(9)$	$0.67727(4)$
C(8)	0.9033(5)	$0.1547(4)$	$0.6600(2)$	H(1)	$0.674(5)$	0.397(4)	$0.738(2)$
C(9)	$1.0343(4)$	0.2568(3)	$0.6636(2)$	H(3)	$0.785(4)$	0.204(3)	0.864(2)
$\mathrm{C}(10)$	$1.2220(5)$	0.2431 (3)	0.6351(2)	H(4)	0.954(5)	-0.010(3)	0.873(2)
$\mathrm{C}(11)$	$1.2922(5)$	0.3807(4)	0.6451(2)	H(5A)	0.697(5)	-0.142(4)	0.810(2)
C(12)	1.2313(5)	0.4332(4)	0.7147(2)	H(5B)	0.880(5)	-0.217(4)	0.833(2)
C(13)	$1.0284(5)$	$0.4676(4)$	0.7298(2)	H(6A)	$1.065(6)$	-0.118(4)	0.758(2)
C(14)	$0.9493(5)$	0.3543 (3)	0.7053(2)	H(6B)	0.922(5)	-0.152(4)	$0.716(2)$
C(16)	$0.7669(6)$	$-0.0651(4)$	$0.9364(2)$	H(8)	$0.910(5)$	0.100(4)	$0.622(2)$
C(17)	0.7480(8)	0.0422(5)	0.9876 (2)	H(10)	$1.236(4)$	0.226 (3)	$0.594(2)$
C(18)	$1.2437(5)$	$0.5004(4)$	0.5901(2)	H(11)	$1.421(5)$	$0.355(3)$	0.641 (1)
C(19)	1.2422(8)	$0.5537(5)$	0.4733(2)	H(12A)	1.288(5)	$0.514(4)$	0.727(2)
C(20)	0.4280(5)	0.3400(4)	$0.8801(2)$	H(12B)	$1.270(5)$	0.368(4)	0.743 (2)
$\mathrm{C}(21)$	0.2477 (5)	$0.3954(4)$	0.8995(2)	H(13A)	$0.996(5)$	$0.471(4)$	0.776(2)
C(22)	0.1863(7)	0.5353(5)	0.9190(2)	H(13B)	$0.988(5)$	$0.552(4)$	0.710(2)
C(23)	0.3014(9)	$0.6258(6)$	0.9183(3)	H(17A)	$0.745(7)$	-0.001(6)	$1.031(3)$
C(24)	0.4783(8)	$0.5788(5)$	0.8998(3)	H(17B)	$0.816(8)$	$0.113(6)$	$0.975(3)$
C(25)	$0.5418(7)$	0.4385(4)	0.8808(2)	$\mathrm{H}(17 \mathrm{C})$	$0.639(8)$	$0.115(6)$	$0.985(3)$
C(26)	1.5161(5)	$0.0112(4)$	0.6188(2)	H(19A)	1.268(8)	$0.498(6)$	$0.435(3)$
C(27)	1.6160(5)	-0.1308(4)	0.6252(2)	H(19B)	1.121(8)	0.580(6)	0.473 (3)
C(28)	1.7609(6)	-0.1798(5)	0.5803(2)	H(19C)	$1.305(7)$	$0.632(6)$	$0.476(2)$
C(29)	1.8110(6)	-0.0906(5)	$0.5275(2)$	H(22)	$0.055(6)$	0.564(4)	$0.933(2)$
C(30)	1.7126(5)	0.0492(5)	$0.5176(2)$	H(23)	0.276 (6)	0.720(5)	$0.921(2)$
C(31)	1.5683(5)	0.0995(4)	0.5623(2)	H(24)	$0.574(6)$	0.638(5)	$0.901(2)$
$\mathrm{N}(1)$	0.1152(5)	0.3073(4)	$0.9007(2)$	H(25)	$0.669(6)$	0.416(5)	0.864(2)
$\mathrm{N}(2)$	1.5697(5)	0.2362(4)	$0.6793(2)$	H(28)	$1.815(6)$	-0.259(5)	$0.588(2)$
$\mathrm{O}(1)$	0.7328 (6)	-0.1838(3)	$0.9513(2)$	H(29)	$1.912(6)$	-0.122(4)	$0.498(2)$
$\mathrm{O}(2)$	1.1890(5)	0.6264 (3)	0.5975 (1)	H(30)	$1.723(6)$	$0.110(5)$	0.482(2)
$\mathrm{O}(3)$	1.2741(4)	0.4501 (3)	$0.5306(1)$	H(31)	$1.515(6)$	0.191 (5)	0.556(2)

${ }^{4}$) For practical reasons, the atom numbering does not follow the IUPAC rules. The ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR spectra of $\mathbf{4 3}$ are described in the Exper. Part; there, the atom numbering follows the IUPAC rules (see also formula 43).

Table 6. Bond Lengths [A] and Angles ["] for Bis-adduct 43 with Estimated Standard Deviations in Parentheses ${ }^{\text {a }}$)

Distances	
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.539(4)$
$\mathrm{C}(1)-\mathrm{C}(14)$	$1.533(5)$
$\mathrm{C}(1)-\mathrm{O}(15)$	$1.449(4)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.493(4)$
$\mathrm{C}(2)-\mathrm{C}(7)$	$1.321(4)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.542(5)$
$\mathrm{C}(3)-\mathrm{S}(1)$	$1.856(4)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.532(6)$
$\mathrm{C}(4)-\mathrm{C}(16)$	$1.531(5)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.527(6)$
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.489(5)$
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.548(5)$
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.542(5)$
$\mathrm{C}(8)-\mathrm{O}(15)$	$1.444(4)$
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.482(5)$
$\mathrm{C}(9)-\mathrm{C}(14)$	$1.333(4)$
$\mathrm{C}(10)-\mathrm{C}(11)$	$1.541(5)$
$\mathrm{C}(10)-\mathrm{S}(2)$	$1.835(3)$
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.537(5)$
$\mathrm{C}(11)-\mathrm{C}(18)$	$1.519(5)$
$\mathrm{C}(12)-\mathrm{C}(13)$	$1.536(6)$
$\mathrm{C}(13)-\mathrm{C}(14)$	$1.487(6)$
$\mathrm{C}(16)-\mathrm{C}(17)$	$1.501(7)$
$\mathrm{C}(16)-\mathrm{O}(1)$	$1.195(5)$

Angles
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(14) \quad 106.6(3)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{O}(15) \quad 100.1(3)$
$\mathrm{C}(14)-\mathrm{C}(1)-\mathrm{O}(15) \quad 100.4(2)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3) \quad 129.0(3)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(7) \quad 105.5(3)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(7) \quad 125.4(3)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4) \quad 109.3(3)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{S}(1) \quad 107.6(2)$
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{S}(1) \quad 110.3(3)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5) \quad 112.7(3)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(16) \quad 113.4(3)$
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(16) \quad 113.5(3)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6) \quad 110.9(3)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7) \quad 108.9(3)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(2) \quad 125.2(3)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8) \quad 130.2(3)$
$\mathrm{C}(2)-\mathrm{C}(7)-\mathrm{C}(8) \quad 104.5(3)$
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9) \quad 107.6(3)$
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{O}(15) \quad 100.3(2)$
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{O}(15) \quad 99.4(3)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10) \quad 129.2(3)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(14) \quad 104.9(3)$
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(14) \quad 125.5(3)$
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11) \quad 110.2(3)$
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{S}(2) \quad 104.8(2)$
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{S}(2) \quad 114.3(3)$
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12) \quad 112.1(3)$
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(18) \quad 110.7(3)$

$\mathrm{C}(18)-\mathrm{O}(2)$	$1.190(4)$
$\mathrm{C}(18)-\mathrm{O}(3)$	$1.325(4)$
$\mathrm{C}(19)-\mathrm{O}(3)$	$1.446(5)$
$\mathrm{C}(20)-\mathrm{S}(1)$	$1.757(4)$
$\mathrm{C}(20)-\mathrm{C}(21)$	$1.409(5)$
$\mathrm{C}(20)-\mathrm{C}(25)$	$1.403(7)$
$\mathrm{C}(21)-\mathrm{C}(22)$	$1.385(6)$
$\mathrm{C}(22)-\mathrm{C}(23)$	$1.348(9)$
$\mathrm{C}(23)-\mathrm{C}(24)$	$1.369(8)$
$\mathrm{C}(24)-\mathrm{C}(25)$	$1.387(7)$
$\mathrm{C}(26)-\mathrm{S}(2)$	$1.756(3)$
$\mathrm{C}(26)-\mathrm{C}(27)$	$1.398(5)$
$\mathrm{C}(26)-\mathrm{C}(31)$	$1.409(5)$
$\mathrm{C}(27)-\mathrm{C}(28)$	$1.390(6)$
$\mathrm{C}(28)-\mathrm{C}(29)$	$1.355(6)$
$\mathrm{C}(29)-\mathrm{C}(30)$	$1.382(6)$
$\mathrm{C}(30)-\mathrm{C}(31)$	$1.387(5)$
$\mathrm{N}(1)-\mathrm{C}(21)$	$1.439(6)$
$\mathrm{N}(1)-\mathrm{O}(4)$	$1.226(5)$
$\mathrm{N}(1)-\mathrm{O}(5)$	$1.221(5)$
$\mathrm{N}(2)-\mathrm{C}(27)$	$1.458(5)$
$\mathrm{N}(2)-\mathrm{O}(6)$	$1.206(5)$
$\mathrm{N}(2)-\mathrm{O}(7)$	$1.208(5)$

$\mathrm{C}(4)-\mathrm{C}(16)-\mathrm{C}(17)$	$117.2(4)$
$\mathrm{C}(4)-\mathrm{C}(16)-\mathrm{O}(1)$	$121.8(4)$
$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{O}(1)$	$120.9(4)$
$\mathrm{C}(11)-\mathrm{C}(18)-\mathrm{O}(2)$	$125.7(3)$
$\mathrm{C}(11)-\mathrm{C}(18)-\mathrm{O}(3)$	$112.1(3)$
$\mathrm{O}(2)-\mathrm{C}(18)-\mathrm{O}(3)$	$122.2(3)$
$\mathrm{C}(18)-\mathrm{O}(3)-\mathrm{C}(19)$	$118.0(3)$
$\mathrm{C}(3)-\mathrm{S}(1)-\mathrm{C}(20)$	$104.5(2)$
$\mathrm{S}(1)-\mathrm{C}(20)-\mathrm{C}(21)$	$121.9(3)$
$\mathrm{S}(1)-\mathrm{C}(20)-\mathrm{C}(25)$	$123.1(3)$
$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{C}(25)$	$114.9(3)$
$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(23)$	$93.3(3)$
$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{N}(1)$	$121.2(3)$
$\mathrm{C}(23)-\mathrm{C}(21)-\mathrm{N}(1)$	$145.5(3)$
$\mathrm{C}(21)-\mathrm{N}(1)-\mathrm{O}(4)$	$119.5(3)$
$\mathrm{C}(21)-\mathrm{N}(1)-\mathrm{O}(5)$	$119.7(4)$
$\mathrm{O}(4)-\mathrm{N}(1)-\mathrm{O}(5)$	$120.8(4)$
$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	$119.6(5)$
$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)$	$120.3(5)$
$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(25)$	$120.8(6)$
$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(20)$	$121.5(4)$
$\mathrm{C}(10)-\mathrm{S}(2)-\mathrm{C}(26)$	$103.6(2)$
$\mathrm{S}(2)-\mathrm{C}(26)-\mathrm{C}(27)$	$122.0(3)$
$\mathrm{S}(2)-\mathrm{C}(26)-\mathrm{C}(31)$	$122.7(2)$
$\mathrm{C}(27)-\mathrm{C}(26)-\mathrm{C}(31)$	$115.3(3)$
$\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{C}(28)$	$122.4(3)$
$\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{N}(2)$	$120.9(3)$
$\mathrm{C}(28)-\mathrm{C}(27)-\mathrm{N}(2)$	$116.7(3)$

Table σ (cont.)

$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(18)$	$112.3(3)$	$\mathrm{C}(27)-\mathrm{N}(2)-\mathrm{O}(6)$	$118.8(4)$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	$113.0(3)$	$\mathrm{C}(27)-\mathrm{N}(2)-\mathrm{O}(7)$	$119.2(3)$
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	$110.1(3)$	$\mathrm{O}(6)-\mathrm{N}(2)-\mathrm{O}(7)$	$122.0(4)$
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(1)$	$130.0(3)$	$\mathrm{C}(27)-\mathrm{C}(28)-\mathrm{C}(29)$	$120.8(4)$
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(9)$	$125.0(3)$	$\mathrm{C}(28)-\mathrm{C}(29)-\mathrm{C}(30)$	$119.0(4)$
$\mathrm{C}(1)-\mathrm{C}(14)-\mathrm{C}(9)$	$104.8(3)$	$\mathrm{C}(30)-\mathrm{C}(30)-\mathrm{C}(31)-\mathrm{C}(26)$	$120.6(4)$
$\mathrm{C}(1)-\mathrm{O}(15)-\mathrm{C}(8)$		$121.7(3)$	
Torsion angles	$94.3(2)$	$\mathrm{H}(10)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{H}(11)$	$-75.4(3)$
$\mathrm{H}(3)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4)$	$-36.9(3)$	$\mathrm{H}(11)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	$53.4(3)$
$\mathrm{H}(4)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~A})$	$175.2(3)$	$\mathrm{H}(11)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	$-56.8(3)$
$\mathrm{H}(4)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5 \mathrm{~B})$	$64.8(3)$	$\mathrm{H}(12 \mathrm{~A})-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~A})$	$-65.0(3)$
$\mathrm{H}(5 \mathrm{~A})-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	$-158.2(3)$	$\mathrm{H}(12 \mathrm{~A})-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B})$	$54.5(3)$
$\mathrm{H}(5 \mathrm{~A})-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	$-44.3(3)$	$\mathrm{H}(12 \mathrm{~B})-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~A})$	$41.5(3)$
$\mathrm{H}(5 \mathrm{~B})-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~A})$	$-46.6(3)$	$\mathrm{H}(12 \mathrm{~B})-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B})$	$161.0(3)$
$\mathrm{H}(5 \mathrm{~B})-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(6 \mathrm{~B})$	$67.3(3)$		

${ }^{\text {a }}$) See Footnote of Table 5.
coordinates are reported in Table 5. Calculated bond lengths and angles are reported in Table 6. Perspective drawings of the molecule prepared by the program ORTEP [46] are shown in Fig. 7. The H-atoms are omitted for clarity. A list of the observed and calculated structure factors as well as tables of temperature factors are available as supplementary material. For torsion angles, see bottom of Table 6.

The out-of-plane deviations of the substituents at the endocyclic double-bond centres of the 7 -oxabicyclo[2.2.1]hepta-2,5-diene system of $\mathbf{4 3}$ are given in Fig. 8 (angles between mean planes). Unexpectedly, one of the double bond $\left(\mathrm{C}(2), \mathrm{C}(7)\right.$) is planar ($\alpha_{1}=-0.7^{\circ}$, unsignificant out-of-plane deformation towards the exo face), whereas the other double bond ($\mathbf{C}(9), \mathrm{C}(14)$) presents an average out-of-plane deformation of the substituents towards the endo face of $\alpha_{2}=5.7^{\circ}$.

Fig. 8. Values of angles between mean planes of the bicyclic skeleton of 43

The non-planarity of the bicyclo[2.2.1]hept-2-ene double bond has been demonstrated [54]. MO calculations at the ab-initio STO 3G level [55] suggested that out-ofplane deviations toward the endo face of the substituents at $\mathrm{C}(2), \mathrm{C}(3)$ of 7 -oxabicyclo-[2.2.1]hept-2-enes should also exist, in agreement with experimental data collected for compounds 44-49. The out-of-plane deviations toward the exo face reported for the CH_{3} groups in $46\left(\alpha_{1}=-9.4^{\circ}\right)[47]$ can be attributed to repulsive interactions between the endo $\mathbf{C N}$ groups and these CH_{3} substituents (see also the 'tortured' structure $\mathbf{5 0}$ [50]). Our MO calculations [54] suggested, however, that the pyramidalization of the olefinic C -atom in 7-oxabicyclo[2.2.1]hept-2-enes should be somewhat smaller than for the bicyclo[2.2.1]-hept-2-ene analogs (Bartlett's repulsion effect between the $\operatorname{syn} \mathrm{H}-\mathrm{C}(7)$ and the π-electrons [56]) for which an average value of $\alpha=7^{\circ}$ was obtained from a statistical analysis of the structures in the Cambridge Crystallographic Data File [54]. The MO calculations also suggested the olefinic C-atom pyramidalization should be smaller in bicyclo[2.2.1]hepta-

45
$a=10.4^{\circ}[23 \mathrm{a}]$

46
$a_{1}=-9.4^{\circ}$ [47]
$a_{2}=2.5^{\circ}$

50
$a=-0.8^{\circ}[50]$

53
$a_{1}=5.6^{\circ}$;
$a_{2}=2.3^{\circ}$ [53]

2,5-dienes and 7-oxabicyclo[2.2.1]hepta-2,5-dienes than in bicyclo[2.2.1]hept-2-enes and 7 -oxabicyclo[2.2.1]hept-2-enes, respectively. The number of experimental data available today (43-53) is not sufficient to tell whether the MO predictions are founded or not. It is interesting to note, however, that the out-of-plane deviations α_{1} and α_{2} in 43 appear to be smaller than the α value reported for the analogous system $45\left(\alpha=10.4^{\circ}\right.$ [23a]). The limited number of experimental data on bicyclo[2.2.1]hepta-2,5-dienes (51-53) support the hypothesis that the π-anisotropy in the dienes ($\alpha=1.2$ to 6°) is smaller than in the corresponding monoolefins ($\alpha=7^{\circ}$, averaged). The observation of two different α_{1} and α_{2} values for $\mathbf{4 3}$, although the bicyclic diene has the local $C_{2 v}$ symmetry, is a surprise. If there should be a repulsive interaction between the endo ArS group at $\mathrm{C}(10)$ and the methylene H -atoms at $\mathrm{C}(6)$ (atom numbering used in Fig. 7), it should affect both α_{1} and α_{2} values in a similar fashion; in other words, the two α_{1} and α_{2} values should be nearly the same. We thus must admit that lattice effects of the crystals are quite important on the out-of-plane deviations of the substituents at the olefinic centres of bicyclo[2.2.1]hept-2-ene and bicyclo[2.2.1]hepta-2,5-diene systems.

Conclusions. - The face selectivity of the thermal cycloadditions of S-substituted s-cis-butadiene moieties grafted onto 7-oxabicyclo[2.2.1]heptanes depend on the nature of the dienophile. For bulky dienophiles such as TCNE and 2-nitro-1-butene, the exo face is favoured, whereas the endo face is preferred for the Diels-Alder additions of the less bulky dienophiles such as methyl vinyl ketone, methyl acrylate, or butynone. This demonstrates that at least two factors intervene and compete to render the cycloadditions face selective. The nature (saturated vs. unsaturated) of the ethano bridge homoconju-
gated with the exocyclic diene does not affect the face selectivity in a dramatic fashion. In the presence of a Lewis acid, the face selectivity of the Diels-Alder additions of methyl vinyl ketone can be reversed compared with that of the reaction under thermal conditions. All the cycloadditions were found to be 'ortho' regiospecific.

We thank Hoffmann-La Roche \& Co. AG, Basel, the Swiss National Science Foundation, and the Fonds Herbette, Lausanne, for generous support. We thank also Prof. J. Lauterwein and Mr. M. Rey for their help in the $360-\mathrm{MHz}-^{-1} \mathrm{H}-\mathrm{NMR}$ measurements. We are grateful to Prof. T. Gäumann and Dr. D. Stahl, EPFL, for measurements of absolute masses by high resolution mass spectrometry. We thank Mr. O. Giordano for technical assistance.

Experimental Part

General. See [54]. $360-\mathrm{MHz}-{ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra: Bruker WH 360 FT with Aspect $2000,32 \mathrm{~K}$ memory space, deuterium signal of the solvent as lock signal, internal tetramethylsilane as reference ($=0.0 \mathrm{ppm}$). $90.55-\mathrm{MHz}-{ }^{13} \mathrm{C}-$ NMR spectra: Bruker WH 360 FT, δ_{C} of the solvent as internal reference.

2-Methylidene-3-f($\mathbf{Z})$-(2-nitrophenylsulfenyl)methylidene]-7-oxabicyclo[2.2.1]heptane (16). A soln. of 2-nitrobenzenesulfenyl chloride ($777 \mathrm{mg}, 4.1 \mathrm{mmol}$) in anh. $\mathrm{MeCN}(60 \mathrm{ml})$ was added slowly to a stirred soln. of 2,3-dimethylidene-7-oxabicyclo[2.2.1]heptane ($20 ; 500 \mathrm{mg}, 4.1 \mathrm{mmol}$) in anh. $\mathrm{MeCN}(60 \mathrm{ml})$ at 20°. After stirring at 20° for 90 min , the solvent was evaporated and the residue taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{ml})$. After washing with $\mathrm{H}_{2} \mathrm{O}(50$ $\mathrm{ml}, 3$ times) and drying $\left(\mathrm{MgSO}_{4}\right)$, the solvent was evaporated. The residue was dissolved in anh. THF (50 ml) and cooled to -70° under $\mathrm{N}_{2} . t$-BuOK ($920 \mathrm{mg}, 8.2 \mathrm{mmol}$) was added portionwise, and the mixture was stirred and allowed to warm up to 20°. After stirring at 20° for $12 \mathrm{~h}, \mathrm{H}_{2} \mathrm{O}(50 \mathrm{ml})$ and then $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{ml})$ were added. The org. layer was separated, washed with $\mathrm{H}_{2} \mathrm{O}\left(50 \mathrm{ml}, 3\right.$ times), and dried $\left(\mathrm{MgSO}_{4}\right)$. After evaporation, the residue was purified by column chromatography on silica gel (30 g ; AcOEt/hexane $1: 3$). The 1st fraction contained 127 mg (10%) of 21 (see below); the 2nd fraction gave, after recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane $9: 1,396 \mathrm{mg}$ (35%) of 16, yellow crystals, m.p. 109-110 . UV (MeCN): $243(15000), 292(13500), 381(5000)$. IR (KBr): 3100, 3090, 3020, $3000,2960,2910,2890,1595,1570,1515,1465,1455,1340,1320,1310,1285,1270,1260,1255,1190,1125$, $1110,1060,1050,1020 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 8.22-7.28(\mathrm{~m}, 4$ arom. H); $6.30(\mathrm{~s}, \mathrm{H}-\mathrm{C}-\mathrm{S}) ; 5.3$ (d, $\left.{ }^{3} J\left(\mathrm{H}-\mathrm{C}(4), \mathrm{H}_{e x 0}-\mathrm{C}(5)\right)=5, \mathrm{H}-\mathrm{C}(4)\right) ; 5.29\left(s, \mathrm{H}^{2}\right.$ of $\mathrm{CH}_{2}=\mathrm{C}(2)$ cis to $\left.\mathrm{C}(2), \mathrm{C}(3)\right) ; 5.04\left(s, \mathrm{H}\right.$ of $\mathrm{CH}_{2}=\mathrm{C}(2)$ trans to $\mathrm{C}(2), \mathrm{C}(3)) ; 4.92\left(d,{ }^{3} J\left(\mathrm{H}-\mathrm{C}(1), \mathrm{H}_{e x \omega}-\mathrm{C}(6)\right)=5, \mathrm{H}-\mathrm{C}(1)\right) ; 2.01-1.62\left(m, \mathrm{CH}_{2}(5), \mathrm{CH}_{2}(6)\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right):$ $150.3,148.1,145.8,136.6$ (4 br. $s, \mathrm{C}(2), \mathrm{C}(3), \mathrm{C}(\operatorname{arom}$.$)); 133.6, 128.6, 125.9, 125.6\left(4 d d,{ }^{1} J(\mathrm{C}, \mathrm{H})=168\right.$, ${ }^{3} J(\mathrm{C}, \mathrm{H})=8, \mathrm{HC}($ arom. $\left.)\right) ; 107.2\left(d,{ }^{1} J(\mathrm{C}, \mathrm{H})=175, C \mathrm{H}=\mathrm{C}(3)\right) ; 101.7\left(t,{ }^{1} J(\mathrm{C}, \mathrm{H})=158, \mathrm{CH}_{2}=\mathrm{C}(2)\right) ; 81.1(d t$, $\left.{ }^{1} J(\mathrm{C}, \mathrm{H})=165, \mathrm{C}(4)\right) ; 78.9\left(d t,{ }^{1} J(\mathrm{C}, \mathrm{H})=165, \mathrm{C}(1)\right) ; 29.1,28.2\left(2 t,{ }^{1} J(\mathrm{C}, \mathrm{H})=137, \mathrm{CH}_{2}(5), \mathrm{CH}_{2}(6)\right) . \mathrm{MS}(70 \mathrm{eV}):$ $276(18), 275\left(100, M^{+}\right), 246(8), 212(9), 201(9), 200(9), 153(9)$. Anal. calc. for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{3} \mathrm{~S}(275.322): \mathrm{C} 61.07$, H 4.76; found: C 61.22, H 4.61.

2-endo-Chloromethyl-3-methylidene-2-exo-(2-nitrophenyl) sulfenyl-7-oxabicyclo[2.2.1]heptane (21). Yellow crystals $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ /hexane 9:1), m.p. 139-140 . UV (MeCN): 364 (1500), 276 (sh, 2850), 242 (9100), 220 (sh, 12550). 1R (K Br): $3100,3030,3010,2990,2970,2940,2900,2890,1570,1530,1475,1450,1435,1365,1305,1290,1275$, $1255,1230,1200,1150,1140,1055,1020 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): 7.92-7.35(\mathrm{~m}, 4$ arom. H $) ; 4.9,4.4\left(2 \mathrm{~s}, \mathrm{CH}_{2}=\mathrm{C}(3)\right)$; 3.93, $3.56\left(2 d, J_{\text {gem }}=12.5, \mathrm{CH}_{2} \mathrm{Cl}\right) ; 2.10-1.44\left(m, \mathrm{CH}_{2}(5), \mathrm{CH}_{2}(6)\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 155.6,152.6(2 s) ; 140.5$ $\left(d d,{ }^{1} J(\mathrm{C}, \mathrm{H})=166,{ }^{3} J(\mathrm{C}, \mathrm{H})=5\right) ; 130.9,130.1\left(2 d d,{ }^{1} J(\mathrm{C}, \mathrm{H})=165,{ }^{3} J(\mathrm{C}, \mathrm{H})=8\right) ; 125.2(s) ; 123.3(d d d$, $\left.{ }^{1} J(\mathrm{C}, \mathrm{H})=168,{ }^{3} J(\mathrm{C}, \mathrm{H})=8\right) ; 107.0\left(t,{ }^{1} J(\mathrm{C}, \mathrm{H})=159\right) ; 84.4\left(d m,{ }^{1} J(\mathrm{C}, \mathrm{H})=161\right) ; 81.7\left(d m,{ }^{1} J(\mathrm{C}, \mathrm{H})=161\right) ; 65.4$ $(s) ; 49.4\left(t,{ }^{1} J(\mathrm{C}, \mathrm{H})=154\right) ; 30.7,24.7\left(2 t,{ }^{1} J(\mathrm{C}, \mathrm{H})=136\right) . \mathrm{MS}(70 \mathrm{cV}): 313(1.3), 311\left(4.5, M^{\dagger}\right), 276(4), 175(10)$, 173 (30), 155 (11), 149 (12), 139 (10), 77 (100). Anal. calc. for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{ClNO}_{3} \mathrm{~S}$ (311.78): C 53.93, H 4.52; found: C 53.72, H 4.66.

1,4-Epoxy-1,2,3,4-tetrahydro-5,8-dimethoxy-2-methylidene-3-/(Z)-(2-nitrophenylsulfenyl)methylidene]anthracene (18). A soln. of 1,4-epoxy-1,2,3,4-tetrahydro-5,8-dimethoxy-2,3-dimethylideneanthracene [23b] (22; 200 $\mathrm{mg}, 0.71 \mathrm{mmol}$) in anh. $\mathrm{AcOH}(3 \mathrm{ml}$; degassed) was added dropwise to a stirred mixture of $\mathrm{LiCl}(300 \mathrm{mg}, 7.07$ mmol) and 2-nitrobenzenesulfenyl chloride ($280 \mathrm{mg}, 1.47 \mathrm{mmol}$) in anh. and degassed $\mathrm{AcOH}(6 \mathrm{ml})$. After stirring at 20° for 14 h , the solvent was evaporated and the residue dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{ml})$. The soln. was washed successively with aq. sat. NaHCO_{3} soln. ($10 \mathrm{ml}, 3$ times) and with $\mathrm{H}_{2} \mathrm{O}\left(10 \mathrm{ml}, 2\right.$ times) and dried (MgSO_{4}). After evaporation, the residue was dissolved in anh. THF (30 ml) and cooled to $-78^{\circ} . l-\mathrm{BuOK}$ ($500 \mathrm{mg}, 4.45 \mathrm{mmol}$) was added portionwise under N_{2}. After stirring at 20° for $12 \mathrm{~h}, \mathrm{H}_{2} \mathrm{O}(10 \mathrm{ml})$ was added, and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($20 \mathrm{ml}, 3$ times), filtered through silica gel (15 g , AcOEt/hexane $1: 3$), and the residue recrystallized
from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane $9: 1$ yielding $108 \mathrm{mg}(35 \%)$ of yellow crystals, m.p. $227-228^{\circ}$. UV (MeCN): $210(49500), 262$ (32000), 298 (15500), 339 (6300). IR (KBr): 3000, 2960, 2940, 2900, 2830, 1590, 1560, 1500, 1450, 1330, 1300, 1255, $1215,1160,1130,1100,1070,1050,950,920 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 8.27-7.3(m, 4 \operatorname{arom} . \mathrm{H}) ; 8.16(s, \mathrm{H}-\mathrm{C}(10)) ; 8.15$ $(s, \mathrm{H}-\mathrm{C}(9)) ; 6.75(s, \mathrm{H}-\mathrm{C}(6), \mathrm{H}-\mathrm{C}(7)) ; 6.42(s, \mathrm{H}-\mathrm{C}-\mathrm{SAr}) ; 6.24$ (br. $s, \mathrm{H}-\mathrm{C}(4)) ; 5.81$ (br. $s, \mathrm{H}-\mathrm{C}(1)) ; 5.42(s, \mathrm{H}$ of $\mathrm{CH}_{2}=\mathrm{C}(2)$ cis to $\left.\mathrm{C}(2), \mathrm{C}(3)\right) ; 5.35\left(\mathrm{~s}, \mathrm{H}\right.$ of $\mathrm{CH}_{2}=\mathrm{C}(2)$ trans to $\left.\mathrm{C}(2), \mathrm{C}(3)\right) ; 3.97\left(s, \mathrm{CH}_{3} \mathrm{O}-\mathrm{C}(8)\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right): 150.1,149.8,147.1,147.0,145.8,144.7,141.1,140.0,136.4,125.7$ (10.s); 133.6, 128.8, 125.9, 125.6 (4dd, $\left.{ }^{1} J(\mathrm{C}, \mathrm{H})=166,{ }^{3} J(\mathrm{C}, \mathrm{H})=8\right) ; 113.2,112.6\left(2 d,{ }^{1} J(\mathrm{C}, \mathrm{H})=166\right) ; 109.7\left(d,{ }^{1} J(\mathrm{C}, \mathrm{H})=176\right) ; 104.2\left(t,{ }^{3} J(\mathrm{C}, \mathrm{H})=162\right)$; $104.2,104.1\left(2 d,{ }^{1} J(\mathrm{C}, \mathrm{H})=159\right) ; 83.9,81.5\left(2 d m,{ }^{1} J(\mathrm{C}, \mathrm{H})=167\right) ; 55.7,55.1\left(2 q,{ }^{1} J(\mathrm{C}, \mathrm{H})=144\right) . \mathrm{MS}(70 \mathrm{eV}): 433$ ($100, M^{+}$), 279 (48), 261 (54). Anal. calc. for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{NO}_{5} \mathrm{~S}(433.486$): C 66.50, H 4.41; found: C 66.42, H 4.44.

1,4-Epoxy-1,2,3,4-tetrahydro-5,8-dimethoxy-2-methylidene-3-/(Z$)$-(2-phenylsulfenyl)methylidene]anthracene (19). N-Chlorosuccinimide ($1.6 \mathrm{~g}, 12 \mathrm{mmol}$) was dissolved in anh. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(22 \mathrm{ml})$ and then cooled to 0°. Thiophenol ($1.2 \mathrm{ml}, 12 \mathrm{mmol}$) was added dropwise under N_{2} and stirring. After stirring at 20° for 20 min , the mixture was cooled to -78° and $22(3.37 \mathrm{~g}, 12 \mathrm{mmol})$ dissolved in anh. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(33 \mathrm{~mol})$ was added dropwise. The mixture was stirred and allowed to reach 20° within ca. 90 min. After washing with sat. aq. NaCl soln. ($30 \mathrm{ml}, 2$ times) and drying $\left(\mathrm{MgSO}_{4}\right)$, the solvent was evaporated and the residue dissolved in anh. THF (100 ml). After cooling to $-78^{\circ}, t-\mathrm{BuOK}(13 \mathrm{~g}, 0.12 \mathrm{~mol})$ was added portionwise. The mixture was stirred under N_{2} and allowed to reach 20°. Stirring was continued for 12 h , then $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{ml})$ was added and the mixture extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (20 $\mathrm{ml}, 3$ times). After filtration on silica gel (AcOEt/hexane $1: 3$) and evaporation, the residue was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane $9: 1$ yielding $2.05 \mathrm{~g}(44 \%)$, white crystals, m.p. $170-171^{\circ}$. UV (MeCN): $213(54000), 259(49000)$, 323 (5500), 336 (5800). IR (KBr): 2940, 2900, 2830, 1605, 1585, 1460, 1440, 1385, 1330, 1260, 1225, 1170, 1140, 1080, 1055. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 8.16(\mathrm{~s}, \mathrm{H}-\mathrm{C}(10)) ; 8.15(\mathrm{~s}, \mathrm{H}-\mathrm{C}(9)) ; 7.41-7.16\left(m, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~S}\right) ; 6.6(\mathrm{~s}$, $\mathrm{H}-\mathrm{C}(6), \mathrm{H}-\mathrm{C}(7)) ; 6.49(s, \mathrm{H}-\mathrm{C}-\mathrm{S}) ; 6.13(s, \mathrm{H}-\mathrm{C}(4)) ; 5.76(s, \mathrm{H}-\mathrm{C}(1)) ; 5.23\left(s, \mathrm{H}\right.$ of $\mathrm{CH}_{2}=\mathrm{C}(2)$ cis to $\left.\mathrm{C}(2), \mathrm{C}(3)\right)$; $5.21\left(s, \mathrm{H}^{2}\right.$ of CH ${ }_{2}=\mathrm{C}(2)$ trans to $\left.\mathrm{C}(2), \mathrm{C}(3)\right) ; 3.98\left(s, \mathrm{CH}_{3} \mathrm{O}-\mathrm{C}(5)\right) ; 3.97\left(s, \mathrm{CH}_{3} \mathrm{O}-\mathrm{C}(8)\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 150.1$, $150.0,144.9,142.0,140.7,139.9,135.5(7 s): 129.4\left(d d d,{ }^{1} J(\mathrm{C}, \mathrm{H})=164,{ }^{3} J(\mathrm{C}, \mathrm{H})=6\right) ; 129.1\left(d d,{ }^{1} J(\mathrm{C}, \mathrm{H})=162\right.$; $\left.{ }^{3} J(\mathrm{C}, \mathrm{H})=8\right) ; 126.9\left(d d d,{ }^{1} J(\mathrm{C}, \mathrm{H})=168,{ }^{3} J(\mathrm{C}, \mathrm{H})=7\right) ; 125.9,125.8(2 s) ; 114.3\left(d,{ }^{1} J(\mathrm{C}, \mathrm{H})=174\right) ; 112.7(d$, $\left.{ }^{1} J(\mathrm{C}, \mathrm{H})=164\right) ; 104.1\left(d,{ }^{1} J(\mathrm{C}, \mathrm{H})=159\right) ; 102.1\left(t,{ }^{1} J(\mathrm{C}, \mathrm{H})=160\right) ; 84,1,81.6\left(2 d m,{ }^{1} J(\mathrm{C}, \mathrm{H})=168\right) ; 55.8(q$, $\left.{ }^{1} J(\mathrm{C}, \mathrm{H})=143\right)$. MS $(70 \mathrm{eV}): 388\left(78, M^{\dagger}\right), 311(31), 295(12), 281(13), 280(28), 279(100), 265(11), 264(12), 253$ (11), 252 (19), 251 (66), 249 (27), 236 (24).
(1RS,3SR,8SR)-3-(2-Nitrophenyl) sulfenyl-11-oxatricyclo[6.2.1.0 $\left.{ }^{2,7}\right]$ undec-2(7)-ene-4,4,5,5-tetracarbonitrile (23). A mixture of $16(290 \mathrm{mg}, 1.05 \mathrm{mmol})$ and freshly sublimed TCNE ($135 \mathrm{mg}, 1.05 \mathrm{mmol}$) in anh acetone (5 ml) was stirred at 50° for 6 h . After filtration on silica gel (AcOEt/petroleum ether 3:7), 23 and 24 (see below) were separated by fractional crystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ hexane 9:1. Adduct $\mathbf{2 3}$ crystallized first yielding 196 mg (46%), colourless crystals, m.p. 166-167 . UV (MeCN): $196(22500), 214$ (sh, 18500), 244 (sh, 10000), 336 (2500). IR (KBr): 3010, 2980, 2950, 2900, 1600, 1575, 1540, 1475, 1460, 1435, 1365, 1255, 1230, 1160, 1000, $940,880,860$. ${ }^{1} \mathrm{H}-\mathrm{NMR}:$ Table $2 .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}\right)$: 141.1, 137.0, 136.0, 134.1 (4s, $\mathrm{C}(2), \mathrm{C}(7), \mathrm{C}$ (arom.)); 136.4, 134.7, $131.7,126.7\left(4 d d,{ }^{1} J(\mathrm{C}, \mathrm{H})=166,{ }^{3} J(\mathrm{C}, \mathrm{H})=8, \mathrm{CH}(\right.$ arom. $)$); $112.3,112.0,110.4,110.3(4 \mathrm{br}, s, \mathrm{CN}) ; 81.2,80.0$ $\left(2 d d,{ }^{\mathrm{t}} J(\mathrm{C}, \mathrm{H})=168,{ }^{3} J(\mathrm{C}, \mathrm{H})=8, \mathrm{C}(1), \mathrm{C}(8)\right) ; 49.8\left(d,{ }^{1} J(\mathrm{C}, \mathrm{H})=153, \mathrm{C}(3)\right) ; 47.8,41.7(2 s, \mathrm{C}(4), \mathrm{C}(5)) ; 30.5(t$, $\left.{ }^{1} J(\mathrm{C}, \mathrm{H})=132, \mathrm{C}(6)\right) ; 25.6,24.3\left(2 t,{ }^{1} J(\mathrm{C}, \mathrm{H})=138, \mathrm{C}(9), \mathrm{C}(10)\right) . \mathrm{MS}(70 \mathrm{eV}): 249\left(1.6, M^{+}-\mathrm{SC}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}\right), 221$ (27), 194(12), 167 (22), 154 (32), 139 (100). Anal. calc. for $\mathrm{C}_{20} \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{O}_{3} \mathrm{~S}(403.422$): C 59.54, H 3.25; found: C 59.55 , H 3.28 .
($1 \mathrm{RS}, 3 \mathrm{RS}, 8 \mathrm{SR}$)-3-(2-Nitrophenyl) sulfenyl-11-oxatricyclo[6.2.1.0 $0^{2,7}$]undec-2(7)-ene-4,4,5,5-tetracarbonitrile (24). Evaporation of the mother-liquor of the crystallization of 23 yielded a crystalline product which was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane $9: 1$ yielding $105 \mathrm{mg}(25 \%)$ of colourless crystals, m.p. 215-216 . UV (MeCN): $196(22000), 218(\mathrm{sh}, 17000), 246$ (sh, 10000), 334 (2500). IR (KBr): 3000, 2960, 2940, 2880, 1590, 1570, 1510, 1460, 1430, 1340, 1310, 1255, 1220, 1175, 1150, 1105, 1070, 1040, 1000, 955, 930, 870, 820. ${ }^{1} \mathrm{H}-\mathrm{NMR}$: Table $2 .{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}\right): 141.1,136.8,128.3$ (3 br. $s, \mathrm{C}(2), \mathrm{C}(7), \mathrm{C}($ arom. $)$; $135.1,134.9,131.1,126.7\left(4 d d,{ }^{1} J(\mathrm{C}, \mathrm{H})=166\right.$, ${ }^{3} J(\mathrm{C}, \mathrm{H})=8, \mathrm{C}($ arom $\left.)\right) ; 112.2,111.6(2 \mathrm{C}), 110.2(3 \mathrm{br} . s, \mathrm{CN}) ; 81.6,80.5\left(2 d d,{ }^{1} J(\mathrm{C}, \mathrm{H})=166,{ }^{3} J(\mathrm{C}, \mathrm{H})=8, \mathrm{C}(1)\right.$, $\mathrm{C}(8)) ; 49.8\left(d,{ }^{1} J(\mathrm{C}, \mathrm{H})=158, \mathrm{C}(3)\right) ; 48.1,40.9(2 s, \mathrm{C}(4), \mathrm{C}(5)) ; 31.0\left(t,{ }^{1} J(\mathrm{C}, \mathrm{H})=132, \mathrm{C}(6)\right) ; 26.5,24.8(2 t$, $\left.{ }^{1} J(\mathrm{C}, \mathrm{H})=138, \mathrm{C}(9), \mathrm{C}(10)\right) . \mathrm{MS}(70 \mathrm{eV}): 403\left(1.3, M^{+}\right), 249(3.5), 221(26), 194(7), 167(11), 166(13), 154(26), 139$ (100), 138 (53), 106 (27). Anal. calc. for $\mathrm{C}_{20} \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{O}_{3} \mathrm{~S}$ (403.422): C 59.54, H 3.25; found: C 59.68, H 3.25.
(1RS,3RS,4RS or 4SR,8SR)-4-Ethyl-4-nitro-3-(2-nitrophenyl) sulfenyl-11-oxatricyclo[6.2.1.0 ${ }^{2,7}$ Jundec-$2(7)$-ene (25). A mixture of 16 ($300 \mathrm{mg}, 1.09 \mathrm{mmol}$), 2-nitro-1-butene ($770 \mathrm{mg}, 7.6 \mathrm{mmol}$), and benzene $/ t$ - BuOH $2: 1(3 \mathrm{ml})$ was degassed, sealed under vacuum in a Pyrex tube, and heated to 100° for 24 h . After cooling, the solvent evaporated. The residue was purified by column chromatography on silica gel (30 g ; AcOEt/hexane 1:1) and yielded a 1 st fraction containing 90 mg of 25 and 120 mg of 26 . The 2 nd fraction contained 150 mg of 27 . The adducts 25 and 26 were separated by HPLC (Dupont Instruments, 830 liquid chromatograph) on silica gel
(AcOEt/hexane 1:4). 25: Yellow crystals, recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane 9:1, m.p. 176-177 ${ }^{\circ}$. UV (MeCN): 196 (25500), 246 (13000), 273 (sh, 6200), 358 (2600). IR (KBr): 3090, 2990, 2980, 2950, 2880, 1580, 1520, 1460, 1435, $1380,1350,1285,1255,1220,1195,1170,1115,1050,990,945,920 .{ }^{1} \mathrm{H}-\mathrm{NMR}: ~ T a b l e ~ 2 . ~{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 148.6$, $145.3,137.1,133.6(4$ br. $s, \mathrm{C}(2), \mathrm{C}(7), \mathrm{C}($ arom. $)) ; 133.4,130.0,126.8,125.8\left(4 d d,{ }^{1} J(\mathrm{C}, \mathrm{H})=166,{ }^{3} J(\mathrm{C}, \mathrm{H})=8, \mathrm{C}\right.$ (arom.)); $94.8(s, \mathrm{C}(4)) ; 80.3,79.8\left(2 d,{ }^{1} J(\mathrm{C}, \mathrm{H})=164, \mathrm{C}(1), \mathrm{C}(8)\right) ; 47.7\left(d,{ }^{1} J(\mathrm{C}, \mathrm{H})=149, \mathrm{C}(3)\right) ; 30.4(t$, $\left.{ }^{1} J(\mathrm{C}, \mathrm{H})=13 \mathrm{I}\right) ; 27.1\left(t,{ }^{1} J(\mathrm{C}, \mathrm{H})=136\right) ; 26.9\left(t,{ }^{1} J(\mathrm{C}, \mathrm{H})=129, \mathrm{CH}_{3} \mathrm{CH}_{2}\right) ; 7.6\left(q,{ }^{1} J(\mathrm{C}, \mathrm{H})=126, \mathrm{CH}_{3} \mathrm{CH}_{2}\right) . \mathrm{MS}$ (70 eV): $330\left(78, \mathrm{M}^{+}-\mathrm{NO}_{2}\right.$), 302 (100), 210 (78), 276 (96). Anal. calc. for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}$ (376.434): C 57.43, H 5.35; found: C 57.71, H 5.21.
($1 \mathrm{RS}, 3 \mathrm{SR}, 4 \mathrm{RS}$ or $4 \mathrm{SR}, 8 \mathrm{SR}$)-4-Ethyl-4-nitro-3-(2-nitrophenyl)sulfenyl-11-oxatricyclo[6.2.1.0 $0^{2,7}$]undec-3(7)-ene (26) was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane 9:1, yellow crystals, m.p. 151-152 . UV (MeCN): 196 (26000), 244 (12000), 273 (sh, 5600), 356 (2300). IR (KBr): 3080, 2990, 2985, 2950, 2920, 2880, 1580, 1560, 1500, 1435, 1330, 1310, 1290, 1255, 1220, 1170, 1125, 1100, 1050, 1035, 1000, 950. ${ }^{1} \mathrm{H}-\mathrm{NMR}:$ Table $2 .{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right): 150.4,144.1,137.6,131.2\left(4 \mathrm{br} . s, \mathrm{C}(2), \mathrm{C}(7), \mathrm{C}(\right.$ arom. $)$); 133.1, 132.8, 127.9, $125.2\left(4 d d,{ }^{1} J(\mathrm{C}, \mathrm{H})=166\right.$, ${ }^{3} J(\mathrm{C}, \mathrm{H})=8, \mathrm{C}($ arom. $)$; $96.1(s, \mathrm{C}(4)) ; 79.9,79.0\left(2 d d,{ }^{1} J(\mathrm{C}, \mathrm{H})=164,{ }^{3} J(\mathrm{C}, \mathrm{H})=8, \mathrm{C}(1), \mathrm{C}(8)\right) ; 45.6(d$, $\left.{ }^{1} J(\mathrm{C}, \mathrm{H})=148, \mathrm{C}(3)\right) ; 31.2\left(t,{ }^{1} J(\mathrm{C}, \mathrm{H})=129\right) ; 26.8\left(t,{ }^{1} J(\mathrm{C}, \mathrm{H})=132\right) ; 24.7\left(t,{ }^{1} J(\mathrm{C}, \mathrm{H})=136\right) ;\left(q,{ }^{1} J(\mathrm{C}, \mathrm{H})=128\right.$, $\left.\mathrm{CH}_{3} \mathrm{CH}_{2}\right) . \mathrm{MS}(70 \mathrm{eV}): 376\left(24, \mathrm{M}^{+}\right), 348(67), 330(40), 302(100), 296(22), 274(29), 254(34), 222(53)$. Anal. calc. for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}(376.434)$: C 57.43, H 5.35; found: C 57.55, H 5.26.
(1RS,3RS,4 RS or 4SR,8SR)-4-Ethyl-4-nitro-3-(2-nitrophenyl) sulfenyl-11-oxatricyclo/6.2.1.0 ${ }^{2,7}$ Jundec-2(7)-ene (27) was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane 9:1, yellow crystals, m.p. 184-185 . UV (MeCN): 244 (sh, 12000), 268 (6200), 356 (2800). IR (KBr): 3100, 3080, 3020, 3000, 2980, 2950, 2850, 1590, 1570, 1530, 1465, 1445, $1365,1350,1330,1310,1290,1265,1255,1245,1220,1180,1150,1120,1100,1055,1010,990,965,930 .{ }^{1} \mathrm{H}-\mathrm{NMR}:$ Table 2. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 144.7,137.4,131.2$ (3 br. $s, \mathrm{C}(2), \mathrm{C}(7), \mathrm{C}($ arom. $)$); 132.7, 132.6, 127.8, 125.0 (4dd, $\left.{ }^{1} J(\mathrm{C}, \mathrm{H})=166,{ }^{3} J(\mathrm{C}, \mathrm{H})=8, \mathrm{C}(\operatorname{arom})\right) ; 94.0(s, \mathrm{C}(4)) ; 80.3,80.2\left(2 d d,{ }^{1} J(\mathrm{C}, \mathrm{H})=163,{ }^{3} J(\mathrm{C}, \mathrm{H})=8, \mathrm{C}(1), \mathrm{C}(8)\right) ;$ $51.0\left(d,{ }^{1} J(\mathrm{C}, \mathrm{H})=150, \mathrm{C}(3)\right) ; 29.1\left(t,{ }^{1} J(\mathrm{C}, \mathrm{H})=130\right) ; 24.0\left(t,{ }^{1} J(\mathrm{C}, \mathrm{H})=136\right) ; 19.8\left(t,{ }^{\prime} J(\mathrm{C}, \mathrm{H})=130, \mathrm{CH}_{3} C H_{2}\right)$; $8.5\left(q,{ }^{1} J(\mathrm{C}, \mathrm{H})=125, \mathrm{CH}_{3} \mathrm{CH}_{2}\right) . \mathrm{MS}(70 \mathrm{eV}): 376\left(0.5, M^{+}\right), 330(4), 302(7), 252(2), 176(13), 175(19), 164(11)$, 163 (45), 158 (16), 157 (11), 154 (11), 149 (10), 148 (69), 147 (100). Anal. calc. for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}$ (376.434): C 57.43, H 5.35; found: C 57.38, H 5.37.
(I RS, $3 \mathrm{SR}, 4 \mathrm{RS}, 8 \mathrm{RS}$)-[3-(2-Nitrophenyl)sulfenyl-11-oxatricyclo[6.2.1.0 ${ }^{2,7}$]undec-2(7)-en-4-yl] Methyl Ketone (28). A mixture of $16(200 \mathrm{mg}, 0.726 \mathrm{mmol})$ and MVK ($506 \mathrm{mg}, 7.26 \mathrm{mmol}$) in anh. benzene (1 ml) was heated to 100° under stirring for 13 h . After evaporation, the residue was purified by column chromatography on silica gel (15 g ; AcOEt/petroleum ether $3: 2$). The 1 st fraction contained 168 mg of 29 , the 2 nd one 72 mg of 28 as a yellow oil. UV (MeCN): 248 (12500), 272 (sh, 6000), 366 (2500). IR (film): 2990, 2950, 2870, 1700, 1585, 1560, $1510,1445,1420,1335,1300,1265,1210,1165,1095,1050,1000 .{ }^{1} \mathrm{H}-\mathrm{NMR}: T a b l e ~ 2 .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 207.5(s$, CO); 149.7, 145.0, 138.9, 133.7 (4 br. $s, \mathrm{C}(2), \mathrm{C}(7), \mathrm{C}($ arom. $)$); 132.8, 131.4, 126.7, $125.3\left(4 d d,{ }^{1} J(\mathrm{C}, \mathrm{H})=168\right.$, $\left.{ }^{3} J(\mathrm{C}, \mathrm{H})=8, \mathrm{C}(\operatorname{arom})\right) ; 80.4\left(d,{ }^{1} J(\mathrm{C}, \mathrm{H})=164, \mathrm{C}(1)\right) ; 80.1\left(d,{ }^{1} J(\mathrm{C}, \mathrm{H})=162, \mathrm{C}(8)\right) ; 52.0\left(q,{ }^{1} J(\mathrm{C}, \mathrm{H})=128\right.$, $\left.C \mathrm{H}_{3} \mathrm{CO}\right) ; 26.8\left(t,{ }^{1} J(\mathrm{C}, \mathrm{H})=136\right) ; 24.5\left(t,{ }^{1} J(\mathrm{C}, \mathrm{H})=135\right) ; 21.7\left(t,{ }^{1} J(\mathrm{C}, \mathrm{H})=150\right) ; 20.4\left(t,{ }^{1} J(\mathrm{C}, \mathrm{H})=128\right) . \mathrm{CI}-\mathrm{MS}$ $\left(\mathrm{CH}_{4}\right): 346\left(0.8, M^{+}+1\right), 220(3), 207(2), 198(3), 191$ (100). Anal. calc. for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}_{4} \mathrm{~S}$ (345.421): C 62.59, H 5.54; found: C 62.47, H 5.48.
(1RS,3RS,4RS,8SR)-[3-(2-Nitrophenyl)sulfenyl-11-oxatricyclo[6.2.1.0 $0^{2,7}$]undec-2(7)-en-4-yl] Methyl Ketone (29) was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane 9:1, yellow crystals, m.p. 159-160 ${ }^{\circ}$. UV (MeCN): 196 (22500), 248 (17000), 274 (sh, 6000), 368 (3500). IR (KBr): 3100, 3080, 3060, 3000, 2980, 2950, 2910, 2870, 1690, 1590,1565 , $1510,1455,1445,1360,1340,1305,1270,1255,1220,1205,1175,1165,1105,1060,1040,1020,1010,965$. ${ }^{1} \mathrm{H}-\mathrm{NMR}:$ Table 2. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 208.3(s, \mathrm{CO}) ; 147.7,144.7,137.9,135.0(4 s, \mathrm{C}(2), \mathrm{C}(7), \mathrm{C}($ arom. $)) ; 133.5$, $128.7,125.8(2 \mathrm{C})\left(3 d d,{ }^{1} J(\mathrm{C}, \mathrm{H})=166,{ }^{3} J(\mathrm{C}, \mathrm{H})=8\right) ; 80.5\left(d,{ }^{1} J(\mathrm{C}, \mathrm{H})=164, \mathrm{C}(1)\right) ; 79.9\left(d,{ }^{1} J(\mathrm{C}, \mathrm{H})=162, \mathrm{C}(8)\right)$; $52.7\left(d,{ }^{1} J(\mathrm{C}, \mathrm{H})=130, \mathrm{C}(4)\right) ; 40.6\left(d,{ }^{1} J(\mathrm{C}, \mathrm{H})=148, \mathrm{C}(3)\right) ; 29.0\left(q,{ }^{1} J(\mathrm{C}, \mathrm{H})=128, \mathrm{CH}_{3} \mathrm{CO}\right) ; 27.0,24.7(t$, $\left.{ }^{1} J(\mathrm{C}, \mathrm{H})=134\right) ; 24.1\left(t,{ }^{1} J(\mathrm{C}, \mathrm{H})=132\right) ; 20.2\left(t,{ }^{1} J(\mathrm{C}, \mathrm{H})=129\right) . \mathrm{MS}(70 \mathrm{eV}): 345\left(0.5, M^{\dagger}\right), 207(12), 191(16)$, 173 (10), 163 (28), 155 (20), 149 (39), 148 (12), 147 (23), 145 (14), 139 (10), 138 (20), 132 (12), 131 (100). Anal. calc. for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}_{4} \mathrm{~S}(345.421)$: $\mathrm{C} 62.59, \mathrm{H} 5.54$; found: $\mathrm{C} 62.76, \mathrm{H} 5.76$.

Tosylhydrazone of 29. A mixture of $29(595 \mathrm{mg}, 1.72 \mathrm{mmol})$ and tosylhydrazine ($645 \mathrm{mg}, 3.48 \mathrm{mmol}$) in anh. THF (5 ml) was stirred at 20° for 24 h . After addition of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml})$ and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{ml})$, the layers were separated, and the aq. phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(5 \mathrm{ml}, 2\right.$ times). The org. phases were united, washed with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{ml}$, 2 times), and dried $\left(\mathrm{MgSO}_{4}\right)$. After evaporation and purification on silica gel ($\mathrm{AcOEt} / \mathrm{hexane} 1: 1$), the crude product was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane $9: 1$ yielding 795 mg (90%) of yellow crystals, m.p. 169-170 ${ }^{\circ}$. UV (MeCN): 211 (20000), 229 (23000), 247 ($\mathrm{sh}, 18500$), 275 ($\mathrm{sh}, 6000$), 373 (3000). IR (KBr): 3220, 3100, 3080, 2990, $2980,2960,2930,2885,2880,1585,1560,1520,1445,1420,1395,1330,1300,1245,1155,1095 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right):$ $8.11-7.18(\mathrm{~m}, 9 \mathrm{H}) ; 4.72,4.63\left(2 d,{ }^{3} J=4,2 \mathrm{H}\right) ; 4.68(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}) ; 2.76(\mathrm{~m}, 1 \mathrm{H}) ; 2.39(\mathrm{~s}, 3 \mathrm{H}) ; 2.16-1.93(\mathrm{~m}, 4 \mathrm{H}) ; 1.82$
$(s, 3 \mathrm{H}) ; 1.77-1.68(\mathrm{~m}, 2 \mathrm{H}) ; 1.57-1.48(m, 1 \mathrm{H}) ; 1.31-1.13(m, 1 \mathrm{H}) . \mathrm{Cl}-\mathrm{MS}\left(\mathrm{CH}_{4}\right): 514\left(3.2, M^{+}+1\right), 497(7), 398$ (9), 360 (100), 341 (32). Anal. calc. for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}_{2}$ (513.627): C 58.46, H 5.29; found: C 58.37, H 5.28.
(1RS, 3SR, 8 RS)-10-Methylidene-3-(2-nitrophenyl) sulfenyl-9-[(Z)-(2-nitrophenyl) sulfenylmethylidene]-11oxatricyclo[6.2.1.0 ${ }^{2,7}$]undec-2(7)-ene-4,4,5,5-tetracarbonitrile (30). A mixture of 17 [2] [30] ($300 \mathrm{mg}, 0.66 \mathrm{mmol}$) and TCNE ($85 \mathrm{mg}, 0.66 \mathrm{mmol}$; freshly sublimed) in anh. acetone (8 ml) was stirred at 50° for 14 h . After evaporation, the residue was purified on silica gel (15 g ; AcOEt/hexane $3: 7$) and recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane 9:1 yielding $311 \mathrm{mg}(81 \%)$ as yellow crystals, m.p. 207-208 . UV (MeCN): $196(39000), 219(\mathrm{sh}, 36300), 238$ (sh, 31500), 288 (18100), 366 (9000). IR (KBr): 3080, 3020, 2930, 2360, 1590, 1565, 1510, 1455, 1430, 1340, 1305, $1270,1255,1110,1060,1045,990,940,900 .{ }^{\top} \mathrm{H}-\mathrm{NMR}:$ Table 3. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{COCD}_{3}\right): 152.7,147.2,143.3,142.5$ (2 C), 141.3, 138.9 (6 br. s, C(2), C(7), C(9), C(10), C(arom.)); 137.0, 135.2, 135.0, 132.2, 130.0, 127.4, 126.9, 126.8 $\left(8 d d,{ }^{1} J(\mathrm{C}, \mathrm{H})=168,{ }^{3} J(\mathrm{C}, \mathrm{H})=8, \mathrm{C}(\right.$ arom. $\left.)\right) ; 113.3\left(d,{ }^{1} J(\mathrm{C}, \mathrm{H})=166, \mathrm{H}-\mathrm{C}-\mathrm{SAr}\right) ; 111.8,111.5,111.1,110.1(4 s$, $\mathrm{CN}) ; 107.0\left(t,{ }^{1} J(\mathrm{C}, \mathrm{H})=162, \mathrm{CH}_{2}=\mathrm{C}(10)\right) ; 84.6,83.7\left(2 \mathrm{dm},{ }^{1} J(\mathrm{C}, \mathrm{H})=173, \mathrm{C}(1), \mathrm{C}(8)\right) ; 49.8\left(d,{ }^{1} J(\mathrm{C}, \mathrm{H})=154\right.$, $\mathrm{C}(3)) ; 47.5,45.8(2 s, \mathrm{C}(4), \mathrm{C}(5)) ; 31.0\left(t,{ }^{1} J(\mathrm{C}, \mathrm{H})=140, \mathrm{C}(6)\right) . \mathrm{CI}-\mathrm{MS}\left(\mathrm{CH}_{4}\right): 581\left(100, \mathrm{M}^{+}+1\right), 563(97), 426$ (56), 376 (71), 324 (74), 222 (37), 221 (56). Anal. calc. for $\mathrm{C}_{28} \mathrm{H}_{16} \mathrm{~N}_{6} \mathrm{O}_{5} \mathrm{~S}_{2}$ (580.604): C 57.92, H 2.77; found: C 57.85 , H 2.82 .
($1 \mathrm{RS}, 3 \mathrm{RS}, 4 \mathrm{RS}$ or $4 \mathrm{SR}, 8 \mathrm{RS}$)-4-Ethyl-10-methylidene-4-nitro-3-(2-nitrophenyl) sulfenyl-9-/(Z)-(2-nitrophenyl) sulfenylmethylidene]-11-oxatricyclo[6.2.1.0 ${ }^{2.7}$]undec-2(7)-ene (31). A mixture of 17 ($500 \mathrm{mg}, 1.1 \mathrm{mmol}$), 2-nitro-1-butene ($1.4 \mathrm{~g}, 14.3 \mathrm{mmol}$), benzene (5 ml), and $t-\mathrm{BuOH}(2.5 \mathrm{ml})$ was degassed, sealed under vacuum in a Pyrex tube, and heated to 100° for 24 h . After cooling, the solvent was evaporated and the residue purified by column chromatography on silica gel (60 g ; AcOEt/hexane $3: 1$). The 1 st fraction contained 183 mg (30%) of 31 and $182 \mathrm{mg}(30 \%)$ of $\mathbf{3 2}$. They were separated by HPLC (Dupont, $\mathrm{SiO}_{2}, \mathrm{AcOEt}$ /hexane $\mathbf{1 : 4}$). The 2 nd fraction contained 93 mg (15%) of $\mathbf{3 3}$. Adduct 31 was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ hexane $9: 1$, yellow crystals, m.p. $174-175^{\circ}$. UV (MeCN): 196 (42500), 238 (30000), 280 (19000), 370 (8000). IR (KBr): 3100, 3080, 3020, 2990, 2980, $2940,2910,2880,2850,1590,1570,1530,1520,1450,1440,1390,1345,1335,1310,1250,1110,1055,1040$. ${ }^{1} \mathrm{H}-\mathrm{NMR}:$ Table $3 .{ }^{13} \mathrm{C}$-NMR $\left(\mathrm{CDCl}_{3}\right)$: 149.8, 146.9, 145.7, 144.8, 141.7, 139.8, 136.9, 129.9 (8 br. s, C(2), C(7), $\mathrm{C}(9), \mathrm{C}(10), \mathrm{C}($ arom. $)) ; 134.0,133.9,132.8,128.6,128.4,125.9,125.5,125.3\left(8 \mathrm{dd},{ }^{1} J(\mathrm{C}, \mathrm{H})=166,{ }^{3} J(\mathrm{C}, \mathrm{H})=8, \mathrm{C}\right.$ (arom.)); $108.7\left(d,{ }^{1} J(\mathrm{C}, \mathrm{H})=176, C \mathrm{H}=\mathrm{C}(9)\right) ; 104.1\left(t,{ }^{1} J(\mathrm{C}, \mathrm{H})=160, C \mathrm{H}_{2}=\mathrm{C}(10)\right) ; 95.8(s, \mathrm{C}(4)) ; 83.9,82.5$ $\left(2 d m,{ }^{1} J(\mathrm{C}, \mathrm{H})=168, \mathrm{C}(1), \mathrm{C}(8)\right) ; 45.9\left(d,{ }^{1} J(\mathrm{C}, \mathrm{H})=150, \mathrm{C}(3)\right) ; 31.0,26.7\left(2 t,{ }^{1} J(\mathrm{C}, \mathrm{H})=131, \mathrm{C}(5), \mathrm{C}(6)\right) ; 19.9(t$, $\left.{ }^{1} J(\mathrm{C}, \mathrm{H})=130, \mathrm{CH}_{3} \mathrm{CH}_{2}\right) ; 7.6\left(q,{ }^{1} J(\mathrm{C}, \mathrm{H})=131, \mathrm{CH}_{3} \mathrm{CH}_{2}\right) . \mathrm{MS}(70 \mathrm{eV}): 443\left(5, M^{ \pm}-\mathrm{HN}_{2} \mathrm{O}_{5}\right), 324(71), 303$ (86), 209 (100). Anal. calc, for $\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{~S}_{2}$ (553.617): C 56.41, H 4.18; found: C 56.41, H 4.16.
(1RS,2SR,4RS or $4 \mathrm{SR}, 8 \mathrm{RS}$)-4-Ethyl-10-methylidene-4-nitro-3-(2-nitrophenyl)sulfenyl-9-/(Z)-(2-nitrophenyl) sulfenylmethylidene]-11-oxatricyclo[6.2.1.0.7.7 undec-2(7)-ene (32) was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane 9:1, yellow crystals, m.p. 161--162 . UV (MeCN): 198 (36000), 242 (27500), 280 (18000), 370 (7500). IR (KBr): $3100,3020,2980,2940,2880,2850,1590,1570,1520,1510,1450,1440,1335,1305,1285,1250,1105,1055,1045$, 990. ${ }^{1} \mathrm{H}-\mathrm{NMR}$: Table $3 .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 149.1,146.0,145.0,143.8$ (2 C), 139.8, 136.5, 132.8 (7s, C(2), C(7), $\mathrm{C}(9), \mathrm{C}(10), \mathrm{C}($ arom. $)$); $133.7,133.4,130.1,128.4,127.2,126.0,125.9,125.7\left(8 d d,{ }^{1} J(\mathrm{C}, \mathrm{H})=168,{ }^{3} \mathrm{~J}(\mathrm{C}, \mathrm{H})=8, \mathrm{C}\right.$ (arom.)); $108.9\left(d,{ }^{1} J(\mathrm{C}, \mathrm{H})=176, C H=\mathrm{C}(9)\right) ; 104.6\left(t,{ }^{1} J(\mathrm{C}, \mathrm{H})=160, \mathrm{CH}_{2}=\mathrm{C}(10)\right) ; 94.7(s, \mathrm{C}(4)) ; 84.43,82.6$ $\left(2 d m,{ }^{1} J(\mathrm{C}, \mathrm{H})=168,{ }^{3} J(\mathrm{C}, \mathrm{H})=8, \mathrm{C}(1), \mathrm{C}(8)\right) ; 47.9\left(d,{ }^{1} J(\mathrm{C}, \mathrm{H})=150, \mathrm{C}(3)\right) ; 29.8,27.4\left(t,{ }^{1} J(\mathrm{C}, \mathrm{H})=130\right.$, $\mathrm{C}(5), \mathrm{C}(6)) ; 19.7\left(t, \quad J(\mathrm{C}, \mathrm{H})=130, \mathrm{CH}_{3} \mathrm{CH}_{2}\right) ; 7.6\left(q,{ }^{\prime} J(\mathrm{C}, \mathrm{H})=128, \mathrm{CH}_{3} \mathrm{CH}_{2}\right) . \mathrm{MS}(70 \mathrm{eV}): 507$ (30 , $M^{\dagger}-\mathrm{NO}_{2}$), $479(29), 478(18), 477(45), 369(29), 368(39), 352(100)$. Anal. calc. for $\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{~S}_{2}$ (553.617): C 56.41, H 4.18; found: C 56.30, H 4.30.
(1RS, 3SR, 4RS, 8RS)-[10-Methylidene-3-(2-nitrophenyl) sulfenyl-9-[(Z)-(2-nitrophenyl) sulfenylmethylidene]-11-oxatricyclo[6.2.1.0 ${ }^{2.7}$ lundec-2(7)-en-4-yl] Methyl Ketone (34). A mixture of 17 ($300 \mathrm{mg}, 0.66 \mathrm{mmol}$) and MVK ($464 \mathrm{mg}, 6.6 \mathrm{mmol}$) in anh. benzene (1 ml) was stirred at 100° for $21 / 2 \mathrm{~h}$. After evaporation, the mixture was purified by column chromatography on silica gel (15 g , AcOEt/petroleum ether $1: 1$). The 1 st fraction contained 296 $\mathrm{mg}(86 \%)$ of 35 (see below), the 2 nd fraction $33 \mathrm{mg}(9 \%)$ of 34 . The latter was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane $9: 1$, yellow crystals, m.p. 130-131. UV (MeCN): 202 (31000), 244 (26000), 280 (17500), 376 (7600). IR (KBr): $3110,3090,3000,2960,2930,2870,2830,1710,1590,1570,1505,1450,1425,1335,1305,1245,1215,1175,1150$, 1105, 1060, 1040, 985, 940. ${ }^{1} \mathrm{H}-\mathrm{NMR}:$ Table $3 .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 208.2(s, \mathrm{CO}) ; 146.6,145.5(2 \mathrm{C}), 143.8,141.3$, 136.9 (5 br. $s, \mathrm{C}(2), \mathrm{C}(7), \mathrm{C}(9), \mathrm{C}(10), \mathrm{C}$ (arom.)); 133.7, 132.7, 133.3, 128.4, 127.3, 126.0, 125.5, 125.3 (8dd, ${ }^{1} J(\mathrm{C}, \mathrm{H})=168,{ }^{3} J(\mathrm{C}, \mathrm{H})=8, \mathrm{C}($ arom. $\left.)\right) ; 108.2\left(d,{ }^{1} J(\mathrm{C}, \mathrm{H})=176, C \mathrm{H}=\mathrm{C}(9)\right) ; 104.6\left(t,{ }^{1} J(\mathrm{C}, \mathrm{H})=160\right.$, $\left.\mathrm{CH}_{2}=\mathrm{C}(10)\right) ; 84.7,82.7\left(2 d,{ }^{1} J(\mathrm{C}, \mathrm{H})=168, \mathrm{C}(1), \mathrm{C}(8)\right) ; 52.1\left(d,{ }^{1} J(\mathrm{C}, \mathrm{H})=128, \mathrm{C}(4)\right) ; 44.7\left(d,{ }^{1} J(\mathrm{C}, \mathrm{H})=148\right.$, $\mathrm{C}(3)) ; 28.7\left(q,{ }^{1} J(\mathrm{C}, \mathrm{H})=128\right) ; 21.4\left(t,{ }^{1} J(\mathrm{C}, \mathrm{H})=130, \mathrm{C}(5), \mathrm{C}(6)\right) . \mathrm{MS}(70 \mathrm{eV}): 368\left(3.5, M^{\dagger}-\mathrm{SC}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}\right), 353$ (14), 324 (20), 252 (15), 250 (11), 216 (19), 215 (100), 214 (14), 213 (20). Anal. calc. for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}_{2}$ (522.603): C 59.75, H 4.24; found: C 59.88, H 4.23.
(IRS, 3RS, 4RS, 8RS)-II0-Methylidene-3-(2-nitrophenyl) sulfenyl-9-[(Z)-(2-nitrophenyl)sulfenylmethyl-idene]-ll-oxatricyclof6.2.1.0 $0^{2,7}$]undec-2(7)-en-4-yl] Methyl Ketone (35) was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ hexane 9:1, yellow crystals, m.p. 208-209${ }^{\circ}$. UV (MeCN): 196 (32000), 246 (28000), 282 (18500), 376 (8100). IR (KBr): $3090,3000,2960,2930,2880,2840,1710,1590,1560,1505,1450,1335,1305,1245,1155,1100,1040,960,850$. ${ }^{1} \mathrm{H}-\mathrm{NMR}:$ Table $3 .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$: 208.1 $(\mathrm{s}, \mathrm{CO})$; 147.6, 146.7, 145.7, 145.1, 143.7, 140.4, 136.6, $134.6(8 \mathrm{br} . s$, $\mathrm{C}(2), \mathrm{C}(7), \mathrm{C}(9), \mathrm{C}(10), \mathrm{C}($ arom. $)$); 133.7, 133.4, 128.6, $128.4(2 \mathrm{C}), 125.9(2 \mathrm{C}), 125.6\left(6 d d,{ }^{1} \mathrm{~J}(\mathrm{C}, \mathrm{H})=168\right.$, ${ }^{3} J(\mathrm{C}, \mathrm{H})=8, \mathrm{C}($ arom. $\left.)\right) ; 108.2\left(d,{ }^{1} J(\mathrm{C}, \mathrm{H})=175, C \mathrm{H}=\mathrm{C}(9)\right) ; 105.1\left(t,{ }^{1} J(\mathrm{C}, \mathrm{H})=160, C \mathrm{H}_{2}=\mathrm{C}(10)\right) ; 84.4,82.8$ $\left(2 d m,{ }^{1} J(\mathrm{C}, \mathrm{H})=168, \mathrm{C}(1), \mathrm{C}(8)\right) ; 52.7\left(d,{ }^{1} J(\mathrm{C}, \mathrm{H})=130, \mathrm{C}(4)\right) ; 40.9\left(d,{ }^{1} J(\mathrm{C}, \mathrm{H})=149, \mathrm{C}(3)\right) ; 28.8(q$, $\left.{ }^{1} J(\mathrm{C}, \mathrm{H})=128\right) ; 24.0,20.7\left(2 t,{ }^{1} J(\mathrm{C}, \mathrm{H})=130, \mathrm{C}(5), \mathrm{C}(6)\right) . \mathrm{MS}(70 \mathrm{eV}): 368\left(2, M^{+}-\mathrm{SC}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}\right), 338(19), 252$ (100), 250 (56), 235 (48), 219 (29), 217 (19), 203 (14), 201 (13), 187 (16), 185 (20), 183 (36), 155 (22), 142 (11), 141 (50), 139 (17). Anal. calc. for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}_{2}$ (522.603): C 59.75, H 4.24; found: C 59.84, H 4.24.

Methyl (IRS,3SR,4RS,8RS)-10-Methylidene-3-(2-nitrophenyl) sulfenyl-9-/(Z$)$-(2-nitrophenyl) sulfenylmethylidene]-11-oxatricyclo/6.2.1.0 ${ }^{2,7}$ Jundec-2(7)-ene-4-carboxylate (36). A mixture of $\mathbf{1 7}$ ($500 \mathrm{mg}, 1.1 \mathrm{mmol}$) and methyl acrylate ($860 \mathrm{mg}, 10 \mathrm{mmol}$) was stirred at 70° for 15 h . After evaporation of the excess of methyl acrylate, the rcsidue was purified by column chromatography on silica gel (15 g ; AcOEt/petroleum ether $1: 3$). The 1st fraction contained $447 \mathrm{mg}(76 \%)$ of $\mathbf{3 7}$, the 2 nd fraction $112 \mathrm{mg}(19 \%)$ of $\mathbf{3 6}$ which was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane 9:1, yellow crystals, m.p. $180-181^{\circ}$. UV (MeCN): 245 (25 500), 282 (17500), 375 (7000). IR (KBr): $3020,2960,2910,2840,1745,1595,1575,1530,1505,1455,1440,1360,1335,1310,1250,1225,1195,1175,1115$, $1005,995,960,895,850 .{ }^{1} \mathrm{H}$-NMR: Table 3. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 171.7(s, \mathrm{CO}) ; 150.5,146.8,146.3(2 \mathrm{C}), 146.2$, $144.0,141.1,137.0(7 \mathrm{br} . s, \mathrm{C}(2), \mathrm{C}(7), \mathrm{C}(9), \mathrm{C}(10), \mathrm{C}($ arom. $)$); 133.7, 132.5, 132.4, 128.4, 127.1, 126.0, 125.6, 125.3 $\left(8 d d,{ }^{1} J(\mathrm{C}, \mathrm{H})=168,{ }^{3} J(\mathrm{C}, \mathrm{H})=8, \mathrm{C}(\right.$ arom. $\left.)\right) ; 108.2\left(d,{ }^{1} J(\mathrm{C}, \mathrm{H})=166, C \mathrm{H}=\mathrm{C}(9)\right) ; 104.7\left(t,{ }^{1} J(\mathrm{C}, \mathrm{H})=161\right.$, $\left.C \mathrm{H}_{2}=\mathrm{C}(10)\right) ; 84.7,82.7\left(2 d m,{ }^{1} J(\mathrm{C}, \mathrm{H})=170, \mathrm{C}(1), \mathrm{C}(8)\right) ; 51.3\left(q,{ }^{'} J(\mathrm{C}, \mathrm{H})=148, \mathrm{CH}_{3} \mathrm{OOC}\right) ; 45.2(d$, $\left.{ }^{1} J(\mathrm{C}, \mathrm{H})=148, \mathrm{C}(3)\right) ; 45.0\left(d,{ }^{1} J(\mathrm{C}, \mathrm{H})=130, \mathrm{C}(4)\right) ; 21.4,21.0\left(2 t,{ }^{\prime} J(\mathrm{C}, \mathrm{H})=130, \mathrm{C}(5), \mathrm{C}(6)\right) . \mathrm{CI}-\mathrm{MS}\left(\mathrm{CH}_{4}\right): 567$ $\left(14, M^{+}+\mathrm{C}_{2} \mathrm{H}_{5}\right), 539\left(17, M^{+}+1\right), 521(8), 511(34), 384(100)$. Anal. calc. for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{~S}_{2}(538.601): \mathrm{C} 57.98$, H 4.11; found: C 57.83, H 4.09.

Methyl (1 RS, 3 RS, $4 \mathrm{RS}, 8 \mathrm{RS}$)-10-Methylidene-3-(2-nitrophenyl) sulfenyl-9-/(Z)-(2-nitrophenyl) sulfenylmethylidene /-11-oxatricyclo[6.2.1.0 ${ }^{2,7}$ Jundec-2(7)-ene-4-carboxylate (37) was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}$ 9:1, yellow crystals, m.p. $188-189^{\circ}$. UV (MeCN): 247 (22000), 282 (13000), $375(5800)$. IR (KBr): 3060, 3030, $3000,2980,2960,2920,2840,1725,1590,1570,1515,1455,1430,1375,1305,1270,1250,1201,1185,1170,1100$, 1090, 1060, 1040, 985, 970, 935, 910, $900 .{ }^{1} \mathrm{H}-\mathrm{NMR}:$ Table $3 .{ }^{13} \mathrm{C}$-NMR $\left(\mathrm{CDCl}_{3}\right): 172.6(\mathrm{CO}) ; 147.1,146.4(2 \mathrm{C})$, $145.4,143.5,138.8,136.6,134.8$ (7 br. $s, \mathrm{C}(2), \mathrm{C}(7), \mathrm{C}(9), \mathrm{C}(10), \mathrm{C}($ arom. $)$) $133.6,128.2,127.9,125.8,125.6,125.5$ $\left(6 d d,{ }^{1} J(\mathrm{C}, \mathrm{H})=177, \mathrm{CH}=\mathrm{C}(9)\right) ; 105.1\left(t,{ }^{1} J(\mathrm{C}, \mathrm{H})=161, \mathrm{CH}_{2}=\mathrm{C}(10) ; 84.3,82.6\left(2 \mathrm{dm},{ }^{1} J(\mathrm{C}, \mathrm{H})=168, \mathrm{C}(1)\right.\right.$, $\mathrm{C}(8)) ; 52.1\left(q,{ }^{1} J(\mathrm{C}, \mathrm{H})=148, \mathrm{CH}_{3} \mathrm{OOC}\right) ; 44.3\left(d,{ }^{1} J(\mathrm{C}, \mathrm{H})=131, \mathrm{C}(4)\right) ; 41.7\left(d{ }^{1} J(\mathrm{C}, \mathrm{H})=147, \mathrm{C}(3)\right) ; 21.8,19.6$ $\left(2 t,{ }^{1} J(\mathrm{C}, \mathrm{H})=131, \mathrm{C}(5), \mathrm{C}(6)\right) . \mathrm{CI}-\mathrm{MS}\left(\mathrm{CH}_{4}\right): 567\left(7, M^{+}+\mathrm{C}_{2} \mathrm{H}_{5}\right), 539\left(10, M^{+}+1\right), 521(10), 511(12), 384(100)$.
(/ RS, 3SR, 8RS)-(I0-Methylidene-3-(2-nitrophenyl) sulfenyl-9-/(Z)-(2-nitrophenyl) sulfenylmethylidene)-11-oxatricyclo[6.2.1.0 $0^{2.7}$ Jundeca-2(7).4-dien-4-yl] Methyl Kctone (38). A mixture of tetraene 17 ($300 \mathrm{mg}, 0.66$ mmol), 3-butyn-2-one ($225 \mathrm{mg}, 3.31 \mathrm{mmol}$), and anh. benzene (3 ml) was degassed and sealed under vacuum in a Pyrex tube. The tube was heated to 50° for 40 h . After cooling, the solvent and excess of butynone were evaporated. The crude adduct was purified by filtration through silica gel (AcOEt/hexane 1:1) and recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane $9: 1$ yielding $288 \mathrm{mg}(84 \%)$ of yellow crystals, m.p. $132-133^{\circ}$. UV (MeCN): $202(36000), 241$ (22000), 284 (15000), 376 (6400). IR (KBr): 3100, 3060, 3010, 2880, 2840, 2800, 1675, 1665, 1620, 1590, 1570, 1500 , $1455,1410,1385,1370,1330,1300,1280,1260,1250,1230,1210,1100,1055,1040,965,900,865,850,835,775$. ${ }^{1} \mathrm{H}$-NMR: Table 3. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 196.4(\mathrm{CO}) ; 148.1,145.8(2 \mathrm{C}), 143.1(2 \mathrm{C}), 141.8,140.7,139.4$ ($6 \mathrm{br} . s, \mathrm{C}(2)$, $\mathrm{C}(7), \mathrm{C}(9), \mathrm{C}(10), \mathrm{C}($ arom. $)) ; 138.6\left(d,{ }^{1} J(\mathrm{C}, \mathrm{H})=158, \mathrm{C}(5)\right) ; 131.2$ (br. $\left.s, \mathrm{C}(4)\right) ; 133.8,132.8,129.3,128.4,126.0$, $125.9,125.7,125.6\left(8 d d,{ }^{1} J(\mathrm{C}, \mathrm{H})=168,{ }^{3} J(\mathrm{C}, \mathrm{H})=8, \mathrm{C}(\operatorname{arom}).\right) ; \mathrm{I} 08.5\left(d,{ }^{1} J(\mathrm{C}, \mathrm{H})=170, C \mathrm{H}=\mathrm{C}(9)\right) ; 104.5(t$, $\left.{ }^{1} J(\mathrm{C}, \mathrm{H})=160, C \mathrm{H}_{2}=\mathrm{C}(10)\right) ; 84.3,82.3\left(2 d m,{ }^{1} J(\mathrm{C}, \mathrm{H})=171, \mathrm{C}(1), \mathrm{C}(8)\right) ; 39.4\left(d d,{ }^{\prime} J(\mathrm{C}, \mathrm{H})=150,{ }^{3} J(\mathrm{C}, \mathrm{H})=6\right.$, $\mathrm{C}(3)) ; 25.9\left(q,{ }^{1} J(\mathrm{C}, \mathrm{H})=128, \mathrm{CH}_{3} \mathrm{CO}\right) ; 25.6\left(t,{ }^{1} J(\mathrm{C}, \mathrm{H})=130, \mathrm{C}(6)\right) . \mathrm{MS}(70 \mathrm{eV}): 366\left(37, M^{+}-\mathrm{SC}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}\right)$, 244 (14), 237 (89), 211 (97), 185 (37), 183 (37), 171 (58), 169 (73), 140 (100). Anal. calc. for $\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}_{2}(520.587$): C 59.98, H 3.87; found: C 59.95, H 3.86.
(1RS, 2RS, 5RS, 12RS)-55,12-Epoxy-1,2,3,4,5,12-hexahydro-7,10-dimethoxy-1-(2-nitrophenyl) sulfenyl-2naphthacenyl] Methyl Ketone (39). A mixture of 18 ($400 \mathrm{mg}, 0.92 \mathrm{mmol}$), MVK ($650 \mathrm{mg}, 9.2 \mathrm{mmol}$), and anh. benzene (5 ml) was degassed and selaed under vacuum in a Pyrex tube. The tube was heated to 100° for 56 h . After cooling, the solvent and excess of dienophile were evaporated. The residue was filtered through silica gel (20 g ; AcOEt/hexane 1:1) and recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane $9: 1$ yielding $422 \mathrm{mg}(91 \%)$ of yellow crystals, m.p. 129-130 ${ }^{\circ}$. A trace ($<1 \%$) of another isomeric adduct was detected by ${ }^{1} \mathrm{H}-\mathrm{NMR}(360 \mathrm{MHz})$ of the mother liquor and by TLC. UV (MeCN): 210 (sh, 41000), 261 (28500), 343 (4500). IR (KBr): 3010, 2970, 2940, 2900, 2840, 1710,
$1615,1595,1575,1515,1475,1465,1435,1390,1360,1340,1330,1310,1265,1245,1225,1185,1160,1135,1100$, $1080,1050,960,850,840,800,790,740 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(360 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 8.16-7.25(\mathrm{~m}, 4 \mathrm{H}) ; 7.98(\mathrm{~s}, \mathrm{H}-\mathrm{C}(11)) ; 7.77$ $(s, \mathrm{H}-\mathrm{C}(6)) ; 6.73(s, \mathrm{H}-\mathrm{C}(8), \mathrm{H}-\mathrm{C}(9)) ; 5.61$ (br. $\left.s,{ }^{5} J\left(\mathrm{H}_{\beta}-\mathrm{C}(4), \mathrm{H}-\mathrm{C}(12)\right)=1.2, \mathrm{H}-\mathrm{C}(12)\right) ; 5.55$ (br. s, $\left.{ }^{5} J\left(\mathrm{H}_{\beta}-\mathrm{C}(1), \mathrm{H}-\mathrm{C}(5)\right)=1.0, \mathrm{H}-\mathrm{C}(5)\right) ; 4.88\left(d d d d,{ }^{3} J\left(\mathrm{H}_{\beta}-\mathrm{C}(1), \mathrm{H}_{\alpha}-\mathrm{C}(2)\right)=7.2,{ }^{5} J\left(\mathrm{H}_{\beta}-\mathrm{C}(1), \mathrm{H}_{\alpha}-\mathrm{C}(4)\right)=3.1\right.$, $\left.{ }^{5} J\left(\mathrm{H}_{\beta}-\mathrm{C}(1), \mathrm{H}_{\beta}-\mathrm{C}(4)\right)=2.7, \quad{ }^{5} J\left(\mathrm{H}_{\beta}-\mathrm{C}(1), \mathrm{H}-\mathrm{C}(5)\right)=1.0, \quad \mathrm{H}_{\beta}-\mathrm{C}(1)\right) ; \quad 3.94 \quad\left(s, \quad \mathrm{CH}_{3} \mathrm{O}-\mathrm{C}(10)\right) ; \quad 3.93 \quad(s$, $\left.\mathrm{CH}_{3} \mathrm{O}-\mathrm{C}(7)\right) ; 3.65\left(d d d,{ }^{3} J\left(\mathrm{H}_{\alpha}-\mathrm{C}(2), \mathrm{H}_{\beta}-\mathrm{C}(3)\right)=9.5,{ }^{3} J\left(\mathrm{H}_{\beta}-\mathrm{C}(1), \mathrm{H}_{\alpha}-\mathrm{C}(2)\right)=7.2,{ }^{3} J\left(\mathrm{H}_{\alpha}-\mathrm{C}(2), \mathrm{H}_{\alpha}-\mathrm{C}(3)\right)\right.$ $\left.=3.7, \mathrm{H}_{\alpha}-\mathrm{C}(2)\right) ; 3.52\left(m,{ }^{2} J=18.5,{ }^{3} J\left(\mathrm{H}_{\alpha}-\mathrm{C}(3), \mathrm{H}_{\beta}-\mathrm{C}(4)\right)=5.0,{ }^{5} J\left(\mathrm{H}_{\beta}-\mathrm{C}(1), \mathrm{H}_{\beta}-\mathrm{C}(4)\right)=2.7,{ }^{5} J\left(\mathrm{H}_{\beta}-\mathrm{C}(4)\right.\right.$, $\left.\mathrm{H}-\mathrm{C}(12))=1.2, \mathrm{H}_{\beta}-\mathrm{C}(4)\right) ; 2.22\left(s, \mathrm{CH}_{3} \mathrm{CO}\right) ; 2.13-2.07\left(m,{ }^{2} J=18.5,{ }^{5} J\left(\mathrm{H}_{\beta}-\mathrm{C}(1), \mathrm{H}_{\alpha}-\mathrm{C}(4)\right)=3.1, \mathrm{H}_{\alpha}-\mathrm{C}(4)\right)$; 2.07-2.02 ($\left.m,{ }^{3} J\left(\mathrm{H}_{\alpha}-\mathrm{C}(3), \mathrm{H}_{\beta}-\mathrm{C}(4)\right)=5.0,{ }^{3} J\left(\mathrm{H}-\mathrm{C}(2), \mathrm{H}_{\alpha}-\mathrm{C}(3)\right)=3.7, \mathrm{H}_{\alpha}-\mathrm{C}(3)\right) ; 1.93-1.81\left(\mathrm{~m},{ }^{3} J(\mathrm{H}-\mathrm{C}(2)\right.$, $\left.\left.\mathrm{H}_{\beta}-\mathrm{C}(3)\right)=9.5, \mathrm{H}_{\beta}-\mathrm{C}(3)\right)$; signal attributions confirmed by NOE measurements and double-irradiation experiments. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 208.3,150.6,150.4,149.8,147.6,144.8,144.6,143.5,135.1$ (9s); 133.2, 128.7, 125.9, $125.6\left(4 d d,{ }^{1} J(\mathrm{C}, \mathrm{H})=168,{ }^{3} J(\mathrm{C}, \mathrm{H})=8\right) ; 124.7,124.1(2 s) ; 113.7,111.9\left(2 d,{ }^{1} J(\mathrm{C}, \mathrm{H})=164\right) ; 104.8,104.6(2 d$, $\left.{ }^{1} J(\mathrm{C}, \mathrm{H})=158\right) ; 84.2,83.4\left(2 d,{ }^{1} J(\mathrm{C}, \mathrm{H})=166\right) ; 56.0,55.8\left(2 q,{ }^{1} J(\mathrm{C}, \mathrm{H})=144\right) ; 52.5\left(d,{ }^{1} J(\mathrm{C}, \mathrm{H})=132\right) ; 41.4(d$, $\left.{ }^{1} J(\mathrm{C}, \mathrm{H})=148\right) ; 29.2\left(q,{ }^{1} J(\mathrm{C}, \mathrm{H})=128\right) ; 24.8,21.8\left(2 t,{ }^{1} J(\mathrm{C}, \mathrm{H})=130\right) . \mathrm{MS}(70 \mathrm{eV}): 503\left(42, M^{+}\right), 349(69), 333$ (36), 307 (100).
(I RS,2RS,5RS,12RS)-5,12-Epoxy-1,2,3,4,5,12-hexahydro-7,10-dimethoxy-I-phenylsulfenyl-2-naphthacenyl] Methyl Ketone (40). A mixture of 19 ($180 \mathrm{mg}, 0.46 \mathrm{mmol}$), MVK ($325 \mathrm{mg}, 4.6 \mathrm{mmol}$), and anh. benzene (2 ml) was degassed and selaed under vacuum in a Pyrex tube. The tube was heated to 100° for 12 h . After cooling, the solvent was evaporated. The crude adduct was purified by filtration through silica gel ($15 \mathrm{~g} ; \mathrm{AcOEt} / \mathrm{hexane} 1: 1$) and recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane $9: 1$ yielding $197 \mathrm{mg}(93 \%)$ of yellow crystals, m.p. $166-167^{\circ}$. UV (MeCN): 214 (30000), $262(26000), 310(4000), 327(3500), 342(3000)$. IR (KBr): 3060, 3000, 2960, 2900, 2840, 1700, 1610, 1585 , $1470,1460,1440,1385,1355,1330,1260,1220, \mathrm{l} 180,1155,1130,1080,1045,960,930,895,835 .{ }^{\dagger} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$: $8.08(s, \mathrm{H}-\mathrm{C}(11)) ; 8.0(\mathrm{~s}, \mathrm{H}-\mathrm{C}(6)) ; 7.44-7.21\left(m, \mathrm{C}_{6} \mathrm{H}_{5}\right) ; 6.75(\mathrm{~s}, \mathrm{H}-\mathrm{C}(8), \mathrm{H}-\mathrm{C}(9)) ; 5.71$ (br. $s,{ }^{5} J\left(\mathrm{H}_{\beta}-\mathrm{C}(4)\right.$, $\mathrm{H}-\mathrm{C}(12))=1.2, \mathrm{H}-\mathrm{C}(12)) ; 5.52$ (br. $\left.s,{ }^{5} J\left(\mathrm{H}_{\beta}-\mathrm{C}(1), \mathrm{H}-\mathrm{C}(5)\right)=1.2, \mathrm{H}-\mathrm{C}(5)\right) ; 4.65\left(d d d d,{ }^{3} J\left(\mathrm{H}_{\beta}-\mathrm{C}(1), \mathrm{H}_{\alpha}-\mathrm{C}(2)\right)\right.$ $\left.=7.1,{ }^{5} J\left(\mathrm{H}_{\beta}-\mathrm{C}(1), \mathrm{H}_{\alpha}-\mathrm{C}(4)\right)=3.1,{ }^{5} J\left(\mathrm{H}_{\beta}-\mathrm{C}(1), \mathrm{H}_{\beta}-\mathrm{C}(4)\right)=2.7,{ }^{5} J\left(\mathrm{H}_{\beta}-\mathrm{C}(1), \mathrm{H}-\mathrm{C}(5)\right)=1.2, \mathrm{H}_{\beta}-\mathrm{C}(1)\right) ; 3.97(s$, $\left.\mathrm{CH}_{3} \mathrm{O}-\mathrm{C}(10)\right) ; 3.95\left(s, \mathrm{CH}_{3} \mathrm{O}-\mathrm{C}(7)\right) ; 2.58\left(d d d,{ }^{3} J\left(\mathrm{H}_{\alpha}-\mathrm{C}(2), \mathrm{H}_{\beta}-\mathrm{C}(3)\right)=8.5,{ }^{3} J\left(\mathrm{H}_{\beta}-\mathrm{C}(1), \mathrm{H}_{\alpha}-\mathrm{C}(2)\right)=7.2\right.$, $\left.{ }^{3} J\left(\mathrm{H}_{\alpha}-\mathrm{C}(2), \mathrm{H}_{\alpha}-\mathrm{C}(3)\right)=4.0, \quad \mathrm{H}_{\alpha}-\mathrm{C}(2)\right) ; \quad 2.49 \quad\left(m, \quad{ }^{2} J=18.5, \quad{ }^{5} J\left(\mathrm{H}_{\beta}-\mathrm{C}(1), \mathrm{H}_{\beta}-\mathrm{C}(4)\right)=2.7, \quad{ }^{5} J\left(\mathrm{H}_{\beta}-\mathrm{C}(4)\right.\right.$, $\left.\mathrm{H}-\mathrm{C}(12))=1.2, \mathrm{H}_{\beta}-\mathrm{C}(4)\right) ; 2.11\left(s, \mathrm{CH}_{3} \mathrm{CO}\right) ; 2.10-2.0\left(m,{ }^{2} J=18.5,{ }^{5} J\left(\mathrm{H}_{\beta}-\mathrm{C}(1), \mathrm{H}_{\alpha}-\mathrm{C}(4)\right)=3.1, \mathrm{H}_{\alpha}-\mathrm{C}(4)\right)$; 1.94-1.82 ($\mathrm{m}, \mathrm{CH}_{2}(3)$); signal attributions confirmed by double-irradiation experiments (NOE measurements). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 208.6,150.4,150.0,149.5(2 \mathrm{C}), 146.0,145.2,144.1,135.2(8 \mathrm{~s}) ; 131.3\left(d t,{ }^{\mathrm{l}} J(\mathrm{C}, \mathrm{H})=162\right.$, $\left.{ }^{3} J=8\right) ; 129.1\left(d d,{ }^{1} J(\mathrm{C}, \mathrm{H})=\mathrm{I} 60,{ }^{3} J(\mathrm{C}, \mathrm{H})=8\right) ; 127.1\left(d t,{ }^{1} J(\mathrm{C}, \mathrm{H})=162,{ }^{3} J(\mathrm{C}, \mathrm{H})=8\right) ; 124.6,124.2(2 s) ; 113.7$, $111.8\left(2 d,,^{1} J(\mathrm{C}, \mathrm{H})=164\right) ; 104.6,104.4\left(2 d,{ }^{1} J(\mathrm{C}, \mathrm{H})=158\right) ; 84.2,83.5\left(2 d,{ }^{1} J(\mathrm{C}, \mathrm{H})=166\right) ; 55.9,55.8(2 d$, $\left.{ }^{1} J(\mathrm{C}, \mathrm{H})=144\right) ; 53.2\left(d,{ }^{1} J(\mathrm{C}, \mathrm{H})=130\right) ; 43.9\left(d,{ }^{1} J(\mathrm{C}, \mathrm{H})=148\right) ; 29.1\left(q,{ }^{1} J(\mathrm{C}, \mathrm{H})=128\right) ; 24.3,21.6$ ($2 t$, $\left.{ }^{1} J(\mathrm{C}, \mathrm{H})=130\right) . \mathrm{MS}(70 \mathrm{eV}): 458\left(35, M^{+}\right), 349(36), 307(100), 291(27) . \mathrm{MS}(\mathrm{HR}): 458.1493\left(\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{~S}\right.$, calc. 458.1552).

Methyl (IRS,2RS,9RS,IORS)-[2-Acetyl-9,10-epoxy-1,2,3,4,9,10-hexahydro-I-(2-nitrophenyl) sulfenyl-an-thracene-6-carboxylate J (42). A mixture of $\mathbf{3 5}$ ($300 \mathrm{mg}, 0.662 \mathrm{mmol}$), methyl propynoate ($556 \mathrm{mg}, 6.62 \mathrm{mmol}$), two crystals of hydroquinone, and anh. benzene (3 ml) was degassed and sealed under vacuum in a Pyrex tube. The tube was heated to 80° for 72 h . After cooling, the solvent was evaporated. The residue was purified by column chromatography on silica gel (15 g ; AcOEt/petroleum ether 1:1) and recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane $9: 1$ yielding $208 \mathrm{mg}\left(70 \%\right.$) of yellowish crystals, m.p. 190-191 ${ }^{\circ}$. UV (MeCN): $230(34500), 248$ (sh, 28000), 268 (sh, 15000), 364 (4000). IR (KBr): 3095, 3030, 3010, 2960, 2910, 2850, 1740, 1590, 1565, 1510, 1450, 1435, 1365, 1355 , $1335,1310,1290,1265,1245,1185,1160,1100,1080,1060,1045,995,970,960,940,875 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): 8.20$ $\left(d d,{ }^{4} J(\mathrm{H}-\mathrm{C}(5), \mathrm{H}-\mathrm{C}(7))=1.3,{ }^{5} J(\mathrm{H}-\mathrm{C}(5), \mathrm{H}-\mathrm{C}(8))=0.7, \mathrm{H}-\mathrm{C}(5)\right) ; 8.06\left(d d,{ }^{3} J(\mathrm{H}-\mathrm{C}(7), \mathrm{H}-\mathrm{C}(8))=7.3\right.$, $\left.{ }^{4} J(\mathrm{H}-\mathrm{C}(5), \mathrm{H}-\mathrm{C}(7))=1.3, \mathrm{H}-\mathrm{C}(7)\right) ; 7.82,7.53\left(2 d d,{ }^{3} J=8.1,{ }^{4} J=1.5,2 \mathrm{H}, \mathrm{ArS}\right) ; 7.25\left(d d,{ }^{3} J(\mathrm{H}-\mathrm{C}(7)\right.$, $\left.\mathrm{H}-\mathrm{C}(8))=7.3,{ }^{5} J(\mathrm{H}-\mathrm{C}(5), \mathrm{H}-\mathrm{C}(8))=0.7, \mathrm{H}-\mathrm{C}(8)\right) ; 6.95,6.09\left(d t,{ }^{3} J=8.1,{ }^{4} J=1.5,2 \mathrm{H}, \mathrm{ArS}\right) ; 5.56(s$, $\mathrm{H}-\mathrm{C}(9)) ; 5.32(\mathrm{~s}, \mathrm{H}-\mathrm{C}(10)) ; 4.99(\mathrm{~m}, \mathrm{H}-\mathrm{C}(1)) ; 3.70\left(\mathrm{~s}, \mathrm{CH}_{3} \mathrm{O}\right) ; 2.17(m, \mathrm{H}-\mathrm{C}(1), \mathrm{H}-\mathrm{C}(2)) ; 2.04\left(\mathrm{~m}, \mathrm{H}_{\beta}-\mathrm{C}(4)\right)$; $1.98\left(m, \mathrm{H}_{\alpha}-\mathrm{C}(4)\right) ; 1.80\left(s, \mathrm{CH}_{3} \mathrm{CO}\right) ; 1.60\left(\mathrm{~m}, \mathrm{H}_{\beta}-\mathrm{C}(3)\right) ; 1.50\left(\mathrm{~m}, \mathrm{H}_{\alpha}-\mathrm{C}(3)\right)$; signal attributions confirmed by NOE measurements. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 208.2$ (br. s, CO); 166.9 (br. s, COO); 154.7, 151.9, 148.0, 147.7, 145.1, 134.3 (6 br. $\left.s, \mathrm{C}(5 \mathrm{a}), \mathrm{C}(8 \mathrm{a}), \mathrm{C}(9 \mathrm{a}), \mathrm{C}(10 \mathrm{a}), \mathrm{C}-\mathrm{S}, \mathrm{C}-\mathrm{NO}_{2}\right) ; 133.4\left(d m,{ }^{1} J(\mathrm{C}, \mathrm{H})=163\right) ; 128.8\left(d d,{ }^{1} J(\mathrm{C}, \mathrm{H})=165\right.$, $\left.{ }^{3} J(\mathrm{C}, \mathrm{H})=8\right) ; 128.5\left(d d,{ }^{1} J(\mathrm{C}, \mathrm{H})=162,{ }^{3} J(\mathrm{C}, \mathrm{H})=4\right) ; 127.3\left(d,{ }^{3} J(\mathrm{C}, \mathrm{H})=6\right) ; 126.0\left(d m,{ }^{1} J(\mathrm{C}, \mathrm{H})=168\right) ; 125.8$ $\left(d m,{ }^{\prime} J(\mathrm{C}, \mathrm{H})=168\right) ; 120.6\left(d,{ }^{1} J(\mathrm{C}, \mathrm{H})=164, \mathrm{C}(5)\right) ; 119.9\left(d d,{ }^{1} J(\mathrm{C}, \mathrm{H})=166,{ }^{3} J(\mathrm{C}, \mathrm{H})=8\right) ; 84.1 \quad(d d$, $\left.{ }^{1} J(\mathrm{C}, \mathrm{H})=168,{ }^{3} J(\mathrm{C}, \mathrm{H})=7, \mathrm{C}(9)\right) ; 83.5\left(d d,{ }^{!} J(\mathrm{C}, \mathrm{H})=168,{ }^{3} J(\mathrm{C}, \mathrm{H})=7, \mathrm{C}(10)\right) ; 52.7\left(d,{ }^{!} J(\mathrm{C}, \mathrm{H})=132, \mathrm{C}(2)\right)$; $51.9\left(q,{ }^{1} J(\mathrm{C}, \mathrm{H})=146, \mathrm{CH}_{3} \mathrm{O}\right) ; 41.8\left(d d,{ }^{1} J(\mathrm{C}, \mathrm{H})=148,{ }^{3} J(\mathrm{C}, \mathrm{H})=6, \mathrm{C}(1)\right) ; 29.1\left(q,{ }^{1} J(\mathrm{C}, \mathrm{H})=128, C \mathrm{H}_{3} \mathrm{CO}\right)$; 24.4, $21.8\left(\mathrm{tm},{ }^{1} J(\mathrm{C}, \mathrm{H})=132, \mathrm{C}(3), \mathrm{C}(4)\right)$. MS $(70 \mathrm{eV}): 419\left(9, M^{ \pm}-\mathrm{CH}_{3} \mathrm{O}\right), 255(100), 238$ (19), 228 (39), 195 (58), 166 (63). Anal. calc. for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{NO}_{6} \mathrm{~S}$ (450.502): C 63.84, H 4.68; found: C 63.60, H 5.54.

Methyl (1RS,2SR,5SR,6SR,9SR,10SR)-[2-Acetyl-9,10-epoxy-1,2,3,4,5,6,7,8,9,10-decahydro-1,5-bis(2-nitrophenyl) sulfenyl-2-anthracene-6-carboxylate] (43). A mixture of MVK ($0.56 \mathrm{ml}, 6.62 \mathrm{mmol}), \mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(0.84 \mathrm{ml}$, $6.62 \mathrm{mmol})$, and anh. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{ml})$ was stirred at 20° for 30 min under Ar. After cooling to -78°, a soln. of $\mathbf{3 7}$ (595 $\mathrm{mg}, 1.1 \mathrm{mmol})$ in anh. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(18 \mathrm{ml})$ cooled to -78° was added. After stirring at -78° for 120 h , the mixture was poured into a vigourously stirred ice-cold aq. sat. NaHCO_{3} soln. (10 ml). The org. layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent evaporated. The crude adduct was purified by column chromatography on silica gel (20 g ; AcOEt/hexane 1:1) and recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O} 9: 1$ yielding $470 \mathrm{mg}(70 \%)$ of yellow crystals, m.p. $172-173^{\circ}$. UV (McCN): $248(22000), 272(\mathrm{sh}, 10000), 365(3900)$. IR (KBr): 3070, 3020, 2960, 2940, 2910, 2840, 1610, 1590, 1565, $1505,1465,1450,1370,1330,1300,1260,1225,1200,1190,1170 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 8.22-7.31$ (m , arom. H); 5.12 (br. $s,{ }^{5} J\left(\mathrm{H}_{\beta}-\mathrm{C}(4), \mathrm{H}-\mathrm{C}(9)\right)=1.0, \mathrm{H}-\mathrm{C}(9)$); 5.01 (br. $s,{ }^{5} J\left(\mathrm{H}_{\beta}-\mathrm{C}(8), \mathrm{H}-\mathrm{C}(10)=1.0, \mathrm{H}-\mathrm{C}(10)\right.$); 4.88 (m, ${ }^{3} J\left(\mathrm{H}_{\beta}-\mathrm{C}(5), \mathrm{H}_{\alpha}-\mathrm{C}(6)=3.9,{ }^{5} J\left(\mathrm{H}_{\beta}-\mathrm{C}(5), \mathrm{H}_{\beta}-\mathrm{C}(8)\right)=3.5,{ }^{5} J\left(\mathrm{H}_{\beta}-\mathrm{C}(5), \mathrm{H}_{\alpha}-\mathrm{C}(8)\right)=1.5, \mathrm{H}_{\beta}-\mathrm{C}(5)\right) ; 4.50$ (ddd, $\left.{ }^{3} J\left(\mathrm{H}_{\alpha}-\mathrm{C}(1), \mathrm{H}_{\alpha}-\mathrm{C}(2)\right)=4.5,{ }^{5} J\left(\mathrm{H}_{\alpha}-\mathrm{C}(1), \mathrm{H}_{\alpha}-\mathrm{C}(4)\right)=2.7,{ }^{5} J\left(\mathrm{H}_{\alpha}-\mathrm{C}(1), \mathrm{H}_{\beta}-\mathrm{C}(4)\right)=1.0, \mathrm{H}_{\alpha}-\mathrm{C}(1)\right) ; 3.75(s$, $\left.\mathrm{CH}_{3} \mathrm{O}\right) ; 2.87\left(m,{ }^{3} J\left(\mathrm{H}_{\beta}-\mathrm{C}(5), \mathrm{H}_{\alpha}-\mathrm{C}(6)\right)=3.9, \mathrm{H}-\mathrm{C}(6)\right) ; 2.76\left(m,{ }^{3} J\left(\mathrm{H}_{\alpha}-\mathrm{C}(1), \mathrm{H}_{\alpha}-\mathrm{C}(2)\right)=4.5, \mathrm{H}-\mathrm{C}(2)\right) ; 2.67(m$, ${ }^{5} J\left(\mathrm{H}_{\beta}-\mathrm{C}(5), \quad \mathrm{H}_{\beta}-\mathrm{C}(8)\right)=3.5, \quad{ }^{5} J\left(\mathrm{H}_{\beta}-\mathrm{C}(8), \mathrm{H}-\mathrm{C}(10)\right)=1.0, \quad \mathrm{H}_{\beta}-(\mathrm{C}(8)) ; 2.53 \quad\left(m,{ }^{2} J=18.5, \quad{ }^{5} J\left(\mathrm{H}_{\beta}-\mathrm{C}(4)\right.\right.$, $\left.\mathrm{H}-\mathrm{C}(9)=1.0,{ }^{5} J\left(\mathrm{H}_{\alpha}-\mathrm{C}(1), \mathrm{H}_{\beta}-\mathrm{C}(4)\right)=1.0, \mathrm{H}_{\beta}-\mathrm{C}(4)\right) ; 2.43-2.22\left(m,{ }^{2} J=18.5,{ }^{5} J\left(\mathrm{H}_{x}-\mathrm{C}(1), \mathrm{H}_{\alpha}-\mathrm{C}(4)\right)=2.7\right.$, $\left.\mathrm{H}_{\alpha}-\mathrm{C}(4)\right) ; 2.28-2.12\left(m, \mathrm{H}_{\alpha}-\mathrm{C}(8), \mathrm{CH}_{2}(7)\right) ; 2.08-1.93\left(m, \mathrm{CH}_{2}(3)\right) ; 2.0\left(s, \mathrm{CH}_{3} \mathrm{CO}\right)$; attributions confirmed by double-irradiation experiments. ${ }^{13} \mathrm{C}$-NMR $\left(\mathrm{CDCl}_{3}\right) ; 207.7(s) ; 172.7(s) ; 155.6,154.3,152.0,147.1,146.7,145.7$, $135.1,130.4$ (8 br. s); 135.1, $133.7,132.2,128.2,127.9,126.0,125.7,124.7\left(8 d d,{ }^{1} J(\mathrm{C}, \mathrm{H})=168,{ }^{3} J(\mathrm{C}, \mathrm{H})=8\right) ; 86.3$, $84.9\left(2 d d,{ }^{1} J(\mathrm{C}, \mathrm{H})=168,{ }^{3} J(\mathrm{C}, \mathrm{H})=7\right) ; 53.6\left(d,{ }^{1} J(\mathrm{C}, \mathrm{H})=133\right) ; 52.1\left(q,{ }^{1} J(\mathrm{C}, \mathrm{H})=148\right) ; 45.5\left(d,{ }^{1} J(\mathrm{C}, \mathrm{H})=148\right)$; $44.6\left(d,{ }^{1} J(\mathrm{C}, \mathrm{H})=133\right) ; 42.9\left(d,{ }^{1} J(\mathrm{C}, \mathrm{H})=151\right) ; 28.9\left(q,{ }^{1} J(\mathrm{C}, \mathrm{H})=128\right) ; 23.8,22.1,21.3,20.8\left(4 t,{ }^{1} J(\mathrm{C}, \mathrm{H})=130\right)$. MS (70 eV): $299\left(11, M^{+}-\mathrm{H}\left(\mathrm{SC}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}\right)_{2}\right), 287(14), 283(12), 281$ (16), 271 (29), 257 (21), 255 (12), 254 (12), 252 (25), 250 (11), 239 (45), 197 (45), 195 (39), 181 (60), 169 (100). Anal. calc. for $\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{~S}_{2}$ (608.692): C 59.19, H 4.63; found: C 59.13, H 4.56.

REFERENCES

[1] J.-L. Métral, P. Vogel, Helv. Chim. Acta 1985, $68,334$.
[2] J.-M. Tornare, P. Vogel, J. Org. Chem. 1984, 49, 2510.
[3] M. Avenati, P. Vogel, Helv. Chim. Acta 1983, 66, 1279 and ref. cit. therein.
[4] K. Alder, F. H. Flock, P. Janssen, Chem. Ber. 1956, 89, 2689.
[5] a) L. A. Paquette, R. V. C. Carr, M. C. Böhm, R. Gleiter, J. Am. Chem. Soć. 1980, 102, 1186; b) M. C. Böhm, R. V. C. Carr, R. Gleiter, L.A. Paquette, ibid. 1980, 102,7218 ; c) L. A. Paquette, F. Bellamy, M. C. Böhm, R. Gleiter, J. Org. Chem. 1980, 45, 4913; d) R. Gleiter, L. A. Paquette, Acc. Chem. Res. 1983, 16, 328.
[6] L.A. Paquette, in 'Stereochemistry and Reactivity of Systems Containing π Electrons', Ed. W.H. Watson, Verlag Chemic International, Deerfield Beach, Florida, 1983, pp.41-73.
[7] R. Gleiter, M. C. Böhm, see [6], pp. 105-146.
[8] R. Gleiter, M.C. Böhm, Pure Appl. Chem. 1983, 55, 237.
[9] a) L. A. Paquette, K. E. Green, L. Y. Hsu, J. Org. Chem. 1984, 49, 3650; P. D. Bartlett, C. Wu, ibid. 1984, 49, 1880; b) see also the $[6+4]$ and $[3+4]$ cycloadditions to 1 : L. A. Paquette, S. J. Hathaway, T.M. Kravetz, L. Y. Hsu, J. Am. Chem. Soc. 1984, 106, 5741.
[10] T. Sugimoto, Y. Kobuke, J. Furukawa, J. Org. Chem. 1976, 41, 1457.
[11] W. H. Watson, J. Galloy, P. D. Bartlett, A. A. M. Roof, J. Am. Chem. Soc. 1981, 103, 2022.
[12] J. P. Hagenbuch, P. Vogel, A. A. Pinkerton, D. Schwarzenbach, Helv. Chim. Acta 1981, 64, 1818.
[13] C. Mahaim, P. Vogel, Helv. Chim. Acta 1982, 65, 866; see also: P.-A. Carrupt, F. Berchier, P. Vogel, ibid. 1985, 68, 1716.
[14] L. A. Paquetıe, P.C. Hayes, P. Charumilind, M.C. Böhm, R. Gleiter, J.F. Blount, J. Am. Chem. Soc. 1983, 105, 3148.
[15] L.A. Paquette, P. Charumilind, M. C. Böhm, R. Gleiter, L. S. Bass, J. Clardy, J. Am. Chem. Soc. 1983, I05, 3136.
[16] L. A. Paquette, T. M. Kravetz, M. C. Böhm, R. Gleiter, J. Org. Chem. 1983, 48, 1250.
[17] L. A. Paquette, K. E. Green, R. Gleiter, W. Schäfer, J. G. Callucci, J. Am. Chem. Soc. 1984, 106, 8232.
[18] L.A. Paquette, A. G. Schaefer, J.F. Blount, J. Am. Chem. Soc. 1983, 105, 3642.
[19] M. Avenati, J.-P. Hagenbuch, C. Mahaim, P. Vogel, Tetrahedron Lett. 1980, 3167.
[20] M. Avenati, P. Vogel, Helv. Chim. Acta 1982, 65, 204.
[21] L.A. Paquette, R. V.C. Carr, P. Charumilind, J.F. Blount, J. Org. Chem. 1980, 45, 4922.
[22] P. Vogel, in 'Stereochemistry and Reactivity of Systems Containing π Electrons', Ed. W. H. Watson, Verlag Chemie International, Deerfield Beach, Florida, 1983, pp. 147-195.
[23] a) A.A. Pinkerton, D. Schwarzenbach, J.H.A. Stibbard, P.-A. Carrupt, P. Vogel, J. Am. Chem. Soc. 1981, 103, 2095; b) P. A. Carrupt, P. Vogel, Tetrahedron Lett. 1979, 4533.
[24] J. Tamariz, P. Vogel, Tetrahedron 1984, 40, 4549.
[25] K. Alder, G. Stein, Justus Liebigs Ann. Chem. 1933, 504, 222; ihid. 1934, 514, 1; R. B. Woodward, T. J. Katz, Tetrahedron 1959, 5, 70.
[26] M. A. P. Bowe, R. G. J. Miller, J. B. Rose, D. G. M. Wood, J. Chem. Soc. 1960, 1541.
[27] F. Kienzle, Helv. Chim. Acta 1975, 58, 1180; W. L. Nelson, D. R. Allen, J. Heterocycl. Chem. 1972, 9, 561; D. Gagnaire, E. Payo-Subiza, Bull. Soc. Chim. Fr. 1963, 2627; C. Mahaim, P.-A. Carrupt, J.-P. Hagenbuch, A. Florey, P. Vogel, Helv. Chim. Acta 1980, 63, 1149.
[28] D. G. Garratt, P. L. Beaulieu, J. Org. Chem. 1979, 44, 3555.
[29] A. Chollet, J.-P. Hagenbuch, P. Vogel, Helv. Chim. Acta 1979, 62, 511.
[30] J.-M. Tornare, P. Vogel, Helv. Chim. Acta 1985, 68, 1069.
[31] D. A. Evans, C. A. Bryan, C. L. Sims, J. Am. Chem. Soc. 1972, 94, 2891 ; P. B. Hopkins, P. L. Fuchs, J. Org. Chem. 1978, 43, 1208; M. Petrzilka, J. I. Grayson, Synthesis 1981, 753.
[32] C. Mahaim, Ph. D. Dissertation, Ecole Polytechnique Fédérale de Lausanne, Thèse No. 426 (1981); C. Mahaim, P.-A. Carrupt, P. Vogel, Helv. Chim. Acta 1985, 68, 2182.
[33] T. Cohen, A. J. Mura, Jr., D. W. Shull, E. R. Fogel, R. J. Ruffner, J. R. Falck, J. Org. Chem. 1976, 41, 3218.
[34] P. C. Jain, Y. N. Mukerjee, N. Anand, J. Am. Chem. Soc. 1974, 96, 2996.
[35] J.P. Aycard, H. Bodot, Org. Magn. Reson. 1975, 7, 226.
[36] R. Lafrance, J. P. Aycard, H. Bodot, Org. Magn. Reson. 1977, 9, 253.
[37] O. Pilet, P. Vogel, Helv. Chim. Acta 1981, 64, 2563; see also: O. Pilet, J.-L. Birbaum, P. Vogel, ibid. 1983, 66, 19.
[38] T. Cohen, R. J. Ruffner, D. W. Shull, W.M. Daniewski, R. M. Ottenbrite, P. V. Alston, J. Org. Chem. 1978, 43, 4052 and ref. cit. therein; T. Cohen, Z. Kosarych, ibid. 1982, 47, 4005; B. M. Trost, J. Ippen, W.C. Vladuchick, J. Am. Chem. Soc. 1977, 99, 8116; B. M. Trost, W. C. Vladuchick, A. Bridges, ibid. 1980, 102. 3548, 3554; A. P. Kosikowski, E. M. Huie, ibid. 1982, 104, 2923; A. J. Bridges, J. W. Fischer, Tetrahedron Lett. 1983, 24, 447; M. Kakushima, Can. J. Chem. 1979, 57, 2564; see also: L.E. Overman, C. B. Petty, T. Ban, G. T. Huang, J. Am. Chem. Soc. 1983, 105, 6335 and ref. cit. therein.
[39] F. K. Brown, K. N. Houk, Tetrahedron Lett. 1984, 25, 4609; F. K. Brown, K. N. Houk, J. Am. Chem. Soc. 1985, 107, 1971.
[40] A. A. Pinkerton, D. Schwarzenbach, J. Chem. Soc., Dalton Trans. 1980, 1300.
[41] J. M. Stewart, F.A. Kundell, J. C. Baldwin, 'XRAY-72', version of June 1972, Technical Report TR-192 of the Computing Science Center, University of Maryland (as modified by D. Schwarzenbach).
[42] D. T. Cromer, J. B. Mann, Acta Crystallogr., Sect. A 1968, 24, 321.
[43] R.F. Stewart, E. R. Davidson, W. T. Simpson, J. Phys. Chem. 1965, 42, 3175.
[44] D. T. Cromer, D. Liberman, J. Chem. Phys. 1970, 53, 1891.
[45] P. Main, G. Germain, M. M. Woolfson, 1977, Program for the automatic solution of crystal structures.
[46] C.K. Johnson, ORNL-3794, Oak-Ridge National Laboratory, 1971.
[47] R.H. Hall, S. Harkema, H. J. den Hertog, G. J. van Hummel, D. N. Reinhoudt, Recl. Trav. Chim. Pays-Bas 1981, 100, 312.
[48] P. D. Bartlett, G. L. Combs, Jr., A.-X.T. Le, W.H. Watson, J. Galloy, M. Kimura, J. Am. Chem. Soc. 1982, 104, 3131.
[49] V. Diakiw, C. L. Raston, M. Stewart, A. H. White, Aust. J. Chem. 1978, 31, 1021.
[50] H. O. House, M. B. DeTar, R.F. Sieloff, D. VanDerveer, J. Org. Chem. 1980, 45, 3545.
[51] W. Henslee, R. E. Davis, Acta Crystallogr., Sect. B 1975, 31, 1511.
[52] D. G. Ibbott, N.C. Payne, A. Shaver, Inorg. Chem. 1981, $20,2193$.
[53] H. Maeda, H. Terauchi, K. Nakatsu, Z-i. Yoshida, Y. Asako, S. Miki, Y. Yamada, Acta Crystallogr., Sect. C 1983, 39, 1301.
[54] A. A. Pinkerton, D. Schwarzenbach, J.-L. Birbaum, P.-A. Carrupt, L. Schwager, P. Vogel, Helv. Chim. Acta 1984, 67, 1136.
[55] P.-A. Carrupt, P. Vogel, J. Mol. Struct., Theochem. 1985, 124, 9.
[56] P. D. Bartlett, A. A. M. Roof, W. J. Winter, J. Am. Chem. Soc. 1981, 103, 6520.

[^0]: ${ }^{1}$) Interaction between non-conjugated chromophores, Part 23; Part 22, see [1].
 ${ }^{2}$) Part of the Ph. D. thesis of Jean-Marc Tornare, University of Lausanne, February 1985. For a preliminary communication of a part of this work, see [2].

[^1]: ${ }^{3}$) This compound allows to prepare anthracyclinones via regiospecific tandem Diels-Alder reactions, see eg. [30].

[^2]: ${ }^{4}$) The atom numbering of $\mathbf{4 3}$ follows the IUPAC rules here. For practical reasons, a different numbering was rctained for the description of the crystalline structure of $\mathbf{4 3}$, see below.

[^3]: ${ }^{5}$) We thank Professor K.N. Houk for a preprint of his calculations related to this factor.

